The Chimera antigen receptor (CAR)-T cell therapy has gained great success in the clinic. However, there are still major challenges for its wider applications in a variety of cancer types including lack of effectiveness due to the highly complex tumor microenvironment, and the forbiddingly high cost due to the personalized manufacturing procedures. In order to overcome these hurdles, numerous efforts have been spent focusing on optimizing Chimera antigen receptors, engineering and improving T cell capacity, exploiting features of subsets of T cell or NK cells, or making off-the-shelf universal cells. Here, we developed induced pluripotent stem cells (iPSCs)-derived, CAR-expressing macrophage cells (CAR-iMac). CAR expression confers antigen-dependent macrophage functions such as expression and secretion of cytokines, polarization toward the pro-inflammatory/anti-tumor state, enhanced phagocytosis of tumor cells, and in vivo anticancer cell activity. This technology platform for the first time provides an unlimited source of iPSC-derived engineered CAR-macrophage cells which could be utilized to eliminate cancer cells.
Oxidative stress is linked to carcinogenesis due to its ability to damage DNA. The human gastric pathogen Helicobacter pylori exerts much of its pathogenicity by inducing apoptosis and DNA damage in host gastric epithelial cells. Polyamines are abundant in epithelial cells, and when oxidized by the inducible spermine oxidase SMO(PAOh1) H 2 O 2 is generated. Here, we report that H. pylori up-regulates mRNA expression, promoter activity, and enzyme activity of SMO (PAOh1)
Acetylene hydrochlorination is a major industrial technology for manufacturing vinyl chloride monomer in regions with abundant coal resources; however, it is plagued by the use of mercury(II) chloride catalyst. The development of a nonmercury catalyst has been extensively explored. Herein, we report a N-doped carbon catalyst derived from ZIF-8 with both high activity and quite good stability. The acetylene conversion reached 92% and decreased slightly during a 200 h test at 220 °C and atmospheric pressure. Experimental studies and theoretical calculations indicate that C atoms adjacent to the pyridinic N are the active sites, and coke deposition covering pyridinic N is the main reason for catalyst deactivation. The performance of those N-doped carbons makes it possible for practical applications with further effort. Furthermore, the result also provides guidance for designing metal-free catalysts for similar reactions.
What's already known about this topic?
Confined placental mosaicism (CPM) is a known biological phenomenon that can lead to false positive non-invasive prenatal test results.
The small number of false negative non‐invasive prenatal test results reported to date are believed to be because of a low fetal DNA fraction in maternal plasma and/or placental mosaicism
What does this study add?
The degree and compartmentalization of placental mosaicism can potentially reduce the effective output of fetal DNA into the maternal circulation to steady state levels below the detection limit of non‐invasive prenatal testing, leading to a false negative result
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.