Designing earth-abundant electrocatalysts that are highly active, low-cost, and stable for the oxygen evolution reaction (OER) is crucial for electrochemical water splitting. However, in conventional electrode fabrication strategies, NiFe layered double hydroxide (NiFe LDH) catalysts are usually coated onto substrates as external components, which suffers from poor conductivity, easily detaches from the substrate, and hinders their long-term utilization. Herein, the surface-reconstruction strategy is used to synthesize in situ autologous NiFe LDH to increase the surficial active sites numbers. The FeNi foam (FNF) serves as both the metal source and substrate, and the obtained NiFe LDH nanosheets (NSs) are firmly anchored in the monolithic FNF. What needs to be emphasized is that the strategy does not involve any high-temperature or high-pressure processes, apart from a cost-effective etching and a specified drying treatment. The nanostructure of NiFe LDH and the synergistic effect between Fe and Ni simultaneously lead to an enhanced catalytic effect for the OER. Remarkably, the sr-FNF46 requires only an ultralow overpotential of 283 mV to achieve a current density of 100 mA cm −2 for the OER in 1 M KOH electrolyte, and exhibits excellent stability. Thus, the obtained electrode holds promise for electrocatalytic applications. Finally, the formation mechanism of NiFe LDH NSs due to surface reconstruction is investigated and discussed in detail.
Taking advantage of micro/nano structure engineering and surface boron modulation, we developed a binder-free and support-free electrode to enrich and optimize active sites of Ni.
A top-down strategy using acid etching followed by water soaking is utilized to in-situ synthesize autologous NiFe LDH nanosheets on the NiFe foam without other metal ions, oxidizing agents or...
Currently fabrication of low cost and high efficiency electrocatalysts is a hotspot in the study of water splitting. Herein, plasma spray (PS) was used to induce microcosmic explosion (me) on...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.