Chemokines are low-molecular-weight proteins that stimulate recruitment of leukocytes. They are secondary pro-inflammatory mediators that are induced by primary pro-inflammatory mediators such as interleukin-1 (IL-1) or tumor necrosis factor (TNF). The physiologic importance of this family of mediators is derived from their specificity. Unlike the classic leukocyte chemo-attractants, which have little specificity, members of the chemokine family induce recruitment of well-defined leukocyte subsets. Thus, chemokine expression can account for the presence of different types of leukocytes observed in various normal or pathologic states. There are two major chemokine sub-families based upon the position of cysteine residues, i.e., CXC and CC. All members of the CXC chemokine sub-family have an intervening amino acid between the first two cysteines; members of the CC chemokine sub-family have two adjacent cysteines. As a general rule (with some notable exceptions), members of the CXC chemokines are chemotactic for neutrophils, and CC chemokines are chemotactic for monocytes and a small sub-set of lymphocytes. This review discusses the potential role of chemokines in inflammation and focuses on the two best-characterized chemokines, monocyte chemoattractant protein-1 (MCP-1), a CC chemokine, and interleukin-8 (IL-8), a member of the CXC chemokine sub-family.
P. gingivalis is an important oral pathogen, which has been closely linked to periodontal disease as well as lesions of endodontic origin. Both infections are associated with a decrease in fibroblast numbers, formation of an inflammatory infiltrate, and bone resorption. The goal of this study was to investigate the role that the host response plays in the capacity of P. gingivalis to stimulate fibroblast apoptosis, PMN recruitment, and osteoclastogenesis. This was accomplished by the use of an in vivo calvarial model in mice with targeted deletion of TNF receptors p55 and p75 and matched wild-type mice. The results indicate that P. gingivalis induces fibroblast apoptosis in vivo and establish for the first time that this involves the stimulation of a host response. Moreover, bacteria-stimulated PMN recruitment and osteoclastogenesis were also dependent upon the host response. The results suggest that much of the damage caused by P. gingivalis infection, including fibroblast apoptosis, at least under some circumstances, results from stimulation of the host response rather than the direct effect of bacterial products. Furthermore, this may represent a more general mechanism by which bacterial challenge induces apoptosis of matrix-producing cells through the induction of TNF.
SUMMARY Growth differentiation factor 11 (GDF11), a TGF-beta super-family member, is highly homologous to myostatin and essential for embryonic patterning and organogenesis. Reports of GDF11 effects on adult tissues are conflicting, with some describing anti-aging and pro-regenerative activities on the heart and skeletal muscle while others opposite or no effects. Herein, we sought to determine the in vivo cardiac and skeletal muscle effects of excess GDF11. Mice were injected with GDF11 secreting cells, an identical model to that used to initially identify the in vivo effects of myostatin. GDF11 exposure in mice induced whole body wasting and profound loss of function in cardiac and skeletal muscle over a 14-day period. Loss of cardiac mass preceded skeletal muscle loss. Cardiac histologic and echocardiographic evaluation demonstrated loss of ventricular muscle wall thickness, decreased cardiomyocyte size and decreased cardiac function 10 days following initiation of GDF11 exposure. Changes in skeletal muscle after GDF11 exposure were manifest at day 13 and associated with wasting, decreased fiber size, and reduced strength. Changes in cardiomyocytes and skeletal muscle fibers were associated with activation of SMAD2, the ubiquitin-proteasome pathway and autophagy. GDF11 over administration in vivo results in cardiac and skeletal muscle loss, dysfunction and death. Serum levels of GDF11 by Western blotting were 1.5 fold increased over controls. Although GDF11 effects in vivo are likely dose, route, and duration dependent, its physiologic changes are similar to myostatin and other Activin receptors ligands. These data support that GDF11, like its other closely related TGF-beta family members, induces loss of cardiac and skeletal muscle mass and function.
Bacteria or their products may cause chronic inflammation and subsequent bone loss. This inflammation and bone loss may be associated with significant morbidity in chronic otitis media, periodontitis, endodontic lesions, and loosening of orthopedic implants caused by lipopolysaccharide (LPS)-contaminated implant particles. Currently, it is not clear how bacteria or endotoxin-induced bone resorption occurs and what cell types are involved. Here we report that Porphyromonas gingivalis, a periodontal pathogen, and Escherichia coli LPS induce osteoclastic cell formation from murine leukocytes in the absence of osteoblasts. In contrast, stimulation with parathyroid hormone had no effect. These multinucleated, tartrate-resistant acid phosphatase-positive cells were positive for receptor activator of NF-B (RANK), the receptor for osteoprotegerin ligand (OPGL), also known as RANK ligand (RANKL). Blocking antibodies demonstrated that their formation was dependent upon expression of OPGL and, to a lesser extent, on tumor necrosis factor alpha. Mononuclear cells represented a significant source of OPGL production. In vivo, P. gingivalis injection stimulated OPGL expression in both mononuclear leukocytes and osteoblastic cells. Thus, these findings describe a pathway by which bacteria could enhance osteolysis independently of osteoblasts and suggest that the mix of cells that participate in inflammatory and physiologic bone resorption may be different. This may give insight into new targets of therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.