Chemiluminescence (CL) sensing without external excitation by light and autofluorescence interference has been applied to high‐contrast in vitro immunoassays and in vivo inflammation and tumor microenvironment detection. However, conventional CL sensing usually operates in the range of 400–850 nm, which limits the performance of in vivo imaging due to serious light scattering effects and signal attenuation in tissue. To address this challenge, a new type of CL sensor is presented that functions in the second near‐infrared window (NIR‐II CLS) with a deep penetration depth (≈8 mm). Successive CL resonance energy transfer (CRET) and Förster resonance energy transfer (FRET) from the activated CL substrate to two rationally designed donor‐acceptor‐donor fluorophores BTD540 and BBTD700 occurs. NIR‐II CLS can be selectively activated by hydrogen peroxide over other reactive oxygen species (ROSs). Moreover, NIR‐II CLS is capable of detecting local inflammation in mice with a 4.5‐fold higher signal‐to‐noise ratio (SNR) than that under the NIR‐II fluorescence modality.
LncRNA SNHG1 promotes the development of cervical cancer cells.
IMPORTANCE The gastric cancer (GC)-associated long noncoding RNA1 (lncRNA-GC1) plays an important role in gastric carcinogenesis. However, exosomal lncRNA-GC1 and its potential role in GC are poorly understood. OBJECTIVE To evaluate the diagnostic value of circulating exosomal lncRNA-GC1 for early detection and monitoring progression of GC. DESIGN, SETTING, AND PARTICIPANTS We performed a multiphase investigation of circulating exosomal lncRNA-GC1 for early detection of GC involving consecutive patients with GC (n = 522), patients with gastric precancerous lesions (n = 85), and healthy donor individuals (HDs; n = 219) from December 2016 to February 2019 at Chinese People's Liberation Army General Hospital, China. LncRNA-GC1 was measured by reverse transcription-polymerase chain reaction by independent researchers who had no access to patients' information. Receiver operating characteristic curves were used to calculate diagnostic efficiency in comparison between lncRNA-GC1 and 3 traditional biomarkers (carcinoembryonic antigen [CEA], cancer antigen 72-4 [CA72-4], and CA19-9). MAIN OUTCOMES AND MEASURES Assessment of diagnostic efficiency on the basis of area under curve (AUC), specificity, and sensitivity. RESULTS Of the 826 patients included in the study, 508 were men (61.5%), and the median age of all patients was 60 years (range, 28-82 years). In the test phase, lncRNA-GC1 achieved better diagnostic performance than the standard biomarkers CEA, CA72-4, and CA19-9 (AUC = 0.9033) for distinguishing between the patients with GC and HDs. Additionally, exosomal lncRNA-GC1 levels were significantly higher in culture media from GC cells compared with those of normal gastric epithelial cells (t = 5.310; P = .002). In the verification phase, lncRNA-GC1 retained its diagnostic efficiency in discriminating patients with GC from those with gastric precancerous lesions as well from HDs. Moreover, lncRNA-GC1 exhibited a higher AUC compared with those of CEA, CA72-4, and CA19-9 for early detection of GC with sufficient specificity and sensitivity, especially for patients with GC with negative standard biomarkers. Moreover, the levels of circulating exosomal lncRNA-GC1 were significantly associated with GC from early to advanced stages (HD vs stage I, t = 20.98; P < .001; stage I vs stage II, t = 2.787; P = .006; stage II vs stage III, t = 4.471; P < .001; stage III vs stage IV, t = 1.023; P = .30), independent of pathological grading and Lauren classification (pathological grading: HD vs G1, t = 21.09; P < .001; G1 vs G2, t = 0.3718; P = .71; G2 vs G3, t = 0.3598; P = .72; Lauren classification: t = 24.81; P <.001). In the supplemental phase, the levels of circulating exosomal lncRNA-GC1 were consistent with those in GC tissues and cells and were higher compared with those in normal tissues and cells. Furthermore, the levels of circulating lncRNA-GC1 were unchanged after exosomes were treated with RNase and remained constant after prolonged exposure to room temperature or after repeated freezing and thawing (t = 1.443; P = ....
LASP1 is an actin-binding protein associated with actin assembly dynamics in cancer cells. Here we report that LASP1 is overexpressed in pancreatic ductal adenocarcinoma (PDAC) where it promotes invasion and metastasis. We found that LASP1 overexpression in PDAC cells was mediated by HIF-1α through direct binding to a hypoxia response element in the LASP1 promoter. HIF-1α stimulated LASP1 expression in PDAC cells in vitro and mouse tumor xenografts in vivo. Clinically, LASP1 overexpression in PDAC patient specimens was associated significantly with lymph node metastasis and overall survival. Overall, our results defined LASP1 as a direct target gene for HIF-1α upregulation that is critical for metastatic progression of PDAC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.