Due to its excellent performance in high-dimensional space, the kernel extreme learning machine has been widely used in pattern recognition and machine learning fields. In this paper, we propose a dual-weighted kernel extreme learning machine for hyperspectral imagery classification. First, diverse spatial features are extracted by guided filtering. Then, the spatial features and spectral features are composited by a weighted kernel summation form. Finally, the weighted extreme learning machine is employed for the hyperspectral imagery classification task. This dual-weighted framework guarantees that the subtle spatial features are extracted, while the importance of minority samples is emphasized. Experiments carried on three public data sets demonstrate that the proposed dual-weighted kernel extreme learning machine (DW-KELM) performs better than other kernel methods, in terms of accuracy of classification, and can achieve satisfactory results.
In recent years, the deep neural network has shown a strong presence in classification tasks and its effectiveness has been well proved. However, the framework of DNN usually requires a large number of samples. Compared to the training sets in classification tasks, the training sets for the target detection of hyperspectral images may only include a few target spectra which are quite limited and precious. The insufficient labeled samples make the DNN-based hyperspectral target detection task a challenging problem. To address this problem, we propose a hyperspectral target detection approach with an auxiliary generative adversarial network. Specifically, the training set is first expanded by generating simulated target spectra and background spectra using the generative adversarial network. Then, a classifier which is highly associated with the discriminator of the generative adversarial network is trained based on the real and the generated spectra. Finally, in order to further suppress the background, guided filters are utilized to improve the smoothness and robustness of the detection results. Experiments conducted on real hyperspectral images show the proposed approach is able to perform more efficiently and accurately compared to other target detection approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.