The high-density Industrial Internet of Things needs to meet the requirements of high-density device access and massive data transmission, which requires the support of multiple-input multiple-output (MIMO) antenna cognitive systems to keep high throughput. In such a system, spectral efficiency (SE) optimization based on dynamic power allocation is an effective way to enhance the network throughput as the channel quality variations significantly affect the spectral efficiency performance. Deep learning methods have illustrated the ability to efficiently solve the non-convexity of resource allocation problems induced by the channel multi-path and inter-user interference effects. However, current real-valued deep-learning-based power allocation methods have failed to utilize the representational capacity of complex-valued data as they regard the complex-valued channel data as two parts: real and imaginary data. In this paper, we propose a complex-valued power allocation network (AttCVNN) with cross-channel and in-channel attention mechanisms to improve the model performance where the former considers the relationship between cognitive users and the primary user, i.e., inter-network users, while the latter focuses on the relationship among cognitive users, i.e., intra-network users. Comparison experiments indicate that the proposed AttCVNN notably outperforms both the equal power allocation method (EPM) and the real-valued and the complex-valued fully connected network (FNN, CVFNN) and shows a better convergence rate in the training phase than the real-valued convolutional neural network (AttCNN).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.