Based on the twin bridge shear specimen, the cyclic shear experiments were performed on 1.2 mm thin plates of 316L metastable austenitic stainless steel with different strain amplitudes from 1 to 5% at ambient temperature. The fatigue behavior of 316L stainless steel under the cyclic shear path was studied, and the microscopic evolution of the material was analyzed. The results show that the cyclic stress response of 316L stainless steel exhibited cyclic hardening, saturation and cyclic softening, and the fatigue life is negatively correlated with the strain amplitude. The microstructure was analyzed by using electron back-scattered diffraction (EBSD). It was found that grain refinement and martensitic transformation during the deformation process led to rapid crack expansion and reduced the fatigue life of 316L.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.