Aerobic exercise has beneficial effects on both weight control and skeletal muscle insulin sensitivity through a number of specific signaling proteins. To investigate the targets by which exercise exerts its effects on insulin resistance, an approach of proteomic screen was applied to detect the potential different protein expressions from skeletal muscle of insulin-resistant mice after prolonged aerobic exercise training and their sedentary controls. Eighteen C57BL/6 mice were divided into two groups: 6 mice were fed normal chow (NC) and 12 mice were fed high-fat diet (HFD) for 10 weeks to produce an IR model. The model group was then subdivided into HFD sedentary control (HC, n = 6) and HFD exercise groups (HE, n = 6). Mice in HE group underwent 6 weeks of treadmill running. After 6 weeks, mice were sacrificed and skeletal muscle was dissected. Total protein (n = 6, each group) was extracted and followed by citrate synthase, 2D proteome profile analysis and immunoblot. Fifteen protein spots were altered between the NC and HC groups and 23 protein spots were changed between the HC and HE groups significantly. The results provided an array of changes in protein abundance in exercise-trained skeletal muscle and also provided the basis for a new hypothesis regarding the mechanism of exercise ameliorating insulin resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.