BackgroundThe dipeptidyl peptidase-4 inhibitor sitagliptin, a new anti-diabetic medicine, is effective in treating type 2 diabetes mellitus by increasing the activation and duration of action of glucagon-like peptide-1. Since atherosclerosis is the main pathological feature of diabetic cardiovascular complications, it is important to investigate the anti-atherosclerotic effect of sitagliptin and explore the relevant mechanisms.MethodsMale apolipoprotein-E-knockout mice were randomly divided into two groups and fed either high-fat diet (HFD) or HFD plus sitagliptin at a concentration of 0.3% for 16 weeks. Body weight, food intake, blood glucose, serum lipids and adhesion molecules were measured. The atherosclerotic plaque area and its histological composition were analyzed using Sudan staining and immunohistochemistry. The expression of inflammatory cytokines (monocyte chemoattractant protein (MCP)-1 and interleukin (IL)-6) and the activation of AMP-activated protein kinase (AMPK) and mitogen-activated protein kinase (MAPK) in the aortas were determined using quantitative polymerase chain reaction and western blot, respectively.ResultsMice treated with sitagliptin developed fewer atherosclerotic plaques than the control group (7.64 ± 1.98% vs 12.91 ± 1.15%, p < 0.001), particularly in the aortic arch and abdominal aorta, where plaques were decreased 1.92- and 2.74-fold, respectively (p < 0.05 and p < 0.01). Sitagliptin significantly reduced the content of collagen fiber in plaques 1.2-fold (p < 0.05). Moreover, sitagliptin significantly reduced the expression of monocyte chemoattractant protein-1 and interleukin-6 in the aorta (p < 0.01 and p < 0.05), as well as the serum levels of soluble vascular cell adhesion molecule-1 and P-selectin (both p < 0.05). In addition, Sitagliptin induced phosphorylation of AMPK and Akt (p < 0.05 and p < 0.01), while suppressed phosphorylation of p38 and extracellular signal-regulated kinase (Erk) 1/2 (p < 0.05 and p < 0.01) in aortas.ConclusionsOur present study indicates that sitagliptin can reduce the area of the atherosclerotic lesion, possibly by regulating the AMPK and MAPK pathways and then reducing leukocyte –endothelial cell interaction and inflammation reactions. These actions are independent of weight loss and glucose-reducing effects.
Diabetic neuropathy (DN) is a common and severe complication of diabetes mellitus. There is still a lack of an effective treatment to DN because of its complex pathogenesis. Thioredoxin-interacting protein (TXNIP), an endogenous inhibitor of thioredoxin, has been shown to be associated with diabetic retinopathy and nephropathy. Herein, we aim to investigate the role of TXNIP in prediabetic neuropathy and therapeutic potential of verapamil which has been shown to inhibit TXNIP expression. The effects of mediating TXNIP on prediabetic neuropathy and its exact mechanism were performed using high-fat diet- (HFD-) induced diabetic mice and palmitate-treated neurons. Our results showed that TXNIP upregulation is associated with prediabetic neuropathy in HFD-fed mice. TXNIP knockdown improved DN in HFD-induced prediabetic mice. Mechanistically, increased TXNIP in dorsal root ganglion is transferred into the cytoplasm and shuttled to the mitochondria. In cytoplasm, TXNIP binding to TRX1 results in the increased oxidative stress and inflammation. In mitochondria, TXNIP binding to TRX2 induced mitochondria dysfunction and apoptosis. TXNIP isolated from TRX2 then shuttles to the cytoplasm and binds to NLRP3, resulting in further increased TXNIP-NLRP3 complex, which induced the release of IL-1β and the development of inflammation. Thus, apoptosis and inflammation of dorsal root ganglion neuron eventually cause neural dysfunction. In addition, we also showed that verapamil, a known inhibitor of calcium channels, improved prediabetic neuropathy in the HFD-fed mice by inhibiting the upregulation of TXNIP. Our finding suggests that TXNIP might be a potential target for the treatment of neuropathy in prediabetic patients with dyslipidemia.
Background/Aims: Glucagon-like peptide-1 (GLP-1), which counteracts insulin resistance in humans with type 2 diabetes, has been shown to ameliorate diabetic nephropathy in experimental models. However, the mechanisms through which GLP-1 modulates renal function remained illdefined. The present study investigated the putative mechanisms underlying effects of exendin-4, a GLP-1 analog, on mesangial cell proliferation and fibronectin. Methods: Rat mesangial cells (MCs) were treated with exendin-4 under high glucose conditions. AMP-activated protein kinase (AMPK) inhibitors (compound C) and agonists (AICAR) were used to analyze the role of this kinase. Cell proliferation was measured using a MTT assay. Fibronectin expression and AMPK-signaling pathway activity were assessed using ELISA and Western blotting, respectively. The production of matrix metalloproteinase (MMP)-2 and tissue inhibitors of metalloproteinases (TIMP)-2 was evaluated using quantitative real-time RT-PCR. Results: Exendin-4 inhibited cell proliferation and fibronectin secretion in high glucose-induced MCs. It also caused phosphorylation of AMPK and subsequently increased the ratio of MMP-2 to TIMP-2, which resulted in the degradation of fibronectin. Exendin-4 reversed extracellular signal-regulated kinase (ERK) phosphorylation and enhanced expression of mammalian target of rapamycin (mTOR) in MCs. Moreover, the activation of the AMPK pathway by exendin-4 was induced by AICAR, which was inhibited by compound C. Conclusion: Exendin-4 exerts an inhibitory effect on cell proliferation and fibronectin secretion in rat MCs, partly through AMPK activation. These results may explain some of the beneficial effects of exendin-4 on the kidney.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.