Background To identify risk factors associated with the prognosis of pertussis in infants (< 12 months). Methods A retrospective study on infants hospitalized with pertussis January 2017 to June 2019. The infants were divided into two groups according to the severity of disease: severe pertussis and non-severe pertussis groups. We collected all case data from medical records including socio-demographics, clinical manifestations, and auxiliary examinations. Univariate analysis and Logistic regression were used. Results Finally, a total of 84 infants with severe pertussis and 586 infants with non-severe pertussis were admitted. The data of 75% of the cases (severe pertussis group, n = 63; non-severe pertussis group, n = 189) were randomly selected for univariate and multivariate logistic regression analysis. The results showed rural area [P = 0.002, OR = 6.831, 95% CI (2.013–23.175)], hospital stay (days) [P = 0.002, OR = 1.304, 95% CI (1.107–1.536)], fever [P = 0.040, OR = 2.965, 95% CI (1.050–8.375)], cyanosis [P = 0.008, OR = 3.799, 95% CI (1.419–10.174)], pulmonary rales [P = 0.021, OR = 4.022, 95% CI (1.228–13.168)], breathing heavily [P = 0.001, OR = 58.811, 95% CI (5.503–628.507)] and abnormal liver function [P < 0.001, OR = 9.164, 95% CI (2.840–29.565)] were independent risk factors, and higher birth weight [P = 0.006, OR = 0.380, 95% CI (0.191–0.755)] was protective factor for severe pertussis in infants. The sensitivity and specificity of logistic regression model for remaining 25% data of severe group and common group were 76.2% and 81.0%, respectively, and the consistency rate was 79.8%. Conclusions The findings indicated risk factor prediction models may be useful for the early identification of severe pertussis in infants.
IntroductionThis study aimed to identify biomarkers for acute and chronic brucellosis using advanced proteomic and bioinformatic methods.MethodsBlood samples from individuals with acute brucellosis, chronic brucellosis, and healthy controls were analyzed. Proteomic techniques and differential expression analysis were used to identify differentially expressed proteins. Co-expression modules associated with brucellosis traits were identified using weighted gene co-expression network analysis (WGCNA).Results763 differentially expressed proteins were identified, and two co-expression modules were found to be significantly associated with brucellosis traits. 25 proteins were differentially expressed in all three comparisons, and 20 hub proteins were identified. Nine proteins were found to be both differentially expressed and hub proteins, indicating their potential significance. A random forest model based on these nine proteins showed good classification performance.DiscussionThe identified proteins are involved in processes such as inflammation, coagulation, extracellular matrix regulation, and immune response. They provide insights into potential therapeutic targets and diagnostic biomarkers for brucellosis. This study improves our understanding of brucellosis at the molecular level and paves the way for further research in targeted therapies and diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.