Wheat anther-specific invertase genes were haplotyped in wheat. Strong allelic selection occurred during wheat polyploidization, domestication and breeding because of their association with yield traits. Plant invertase hydrolyzes sucrose into glucose and fructose. Cell wall invertase (CWI), one of the three types of invertase, is essential for plant development. Based on isolated TaCWI genes from chromosomes 4A, 5B and 5D, two SNPs were detected in the promoter region of TaCWI-4A, and four SNPs and two Indels were present in the TaCWI-5D gene. No polymorphism was detected in TaCWI-5B coding or promoter regions. CAPS markers caps4A and caps5D were developed to discriminate haplotypes of TaCWI-4A and TaCWI-5D. Marker/trait association analysis indicated that Hap-5D-C at TaCWI-5D was significantly associated with higher thousand kernel weight (TKW) in 348 Chinese modern cultivars grown in multiple environments. Geographic distributions and changes over time of favored haplotypes showed that Hap-5D-C was the most frequent haplotype in modern cultivars and was strongly positively selected in six major wheat production regions worldwide. However, selection for haplotypes at TaCWI-4A was not so evident, possibly due to balancing effects of the two haplotypes on TKW and grain number per spike (GN). In rainfed production regions, Hap-4A-C was favored because it brought more seeds, but in well irrigated conditions, Hap-4A-T was favored in modern breeding because of higher TKW. Evolutionary analysis among wheat and its relatives showed that genetic diversity of TaCWI genes on chromosomes 4A and 5D declined dramatically in progression from the diploid level to modern polyploid cultivars. There was strong allelic selection during polyploidization, domestication and breeding.
Key message Based on the high-density variation map, we identified genome-level evidence for local adaptation and demonstrated that Siprr37 with transposon insertion contributes to the fitness of foxtail millet in the northeastern ecoregion. Abstract Adaptation is a robust way through which plants are able to overcome environmental constraints. The mechanisms of adaptation in heterogeneous natural environments are largely unknown. Deciphering the genomic basis of local adaptation will contribute to further improvement in domesticated plants. To this end, we describe a high-depth (19.4 ×) haplotype map of 3.02 million single nucleotide polymorphisms in foxtail millet (Setaria italica) from whole-genome resequencing of 312 accessions. In the genome-wide scan, we identified a set of improvement signals (including the homologous gene of OsIPA1, a key gene controlling ideal plant architecture) related to the geographical adaptation to four ecoregions in China. In particular, based on the genome-wide association analysis results, we identified the contribution of a pseudo-response regulator gene, SiPRR37, to heading date adaptation in foxtail millet. We observed the expression changes of SiPRR37 resulted from a key Tc1–Mariner transposon insertion in the first intron. Positive selection analyses revealed that SiPRR37 mainly contributed to the adaptation of northeastern ecoregions. Taken together, foxtail millet adapted to the northeastern region by regulating the function of SiPRR37, which sheds lights on genome-level evidence for adaptive geographical divergence. Besides, our data provide a nearly complete catalog of genomic variation aiding the identification of functionally important variants.
Background: Broomcorn millet is a drought-tolerant cereal that is widely cultivated in the semiarid regions of Asia, Europe, and other continents; however, the mechanisms underlying its drought-tolerance are poorly understood. The NAM, ATAF1/2, and CUC2 (NAC) transcription factors form a large plant-specific gene family that is involved in the regulation of tissue development and abiotic stress. To date, NAC transcription factors have not been systematically researched in broomcorn millet.Results: In the present study, a total of 180 NAC (PmNAC) genes were identified from the broomcorn millet genome and named uniformly according to their chromosomal distribution. Phylogenetic analysis demonstrated that the PmNACs clustered into 12 subgroups, including the broomcorn millet-specific subgroup Pm_NAC. Gene structure and protein motif analyses indicated that closely clustered PmNAC genes were relatively conserved within each subgroup, while genome mapping analysis revealed that the PmNAC genes were unevenly distributed on broomcorn millet chromosomes. Transcriptome analysis revealed that the PmNAC genes differed greatly in expression in various tissues and under different drought stress durations. The expression of 10 selected genes under drought stress was analyzed using quantitative real-time PCR. Conclusion: In this study, 180 NAC genes were identified in broomcorn millet, and their phylogenetic relationships, gene structures, protein motifs, chromosomal distribution, duplication, expression patterns in different tissues, and responses to drought stress were studied. These results will be useful for the further study of the functional characteristics of PmNAC genes, particularly with regards to drought resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.