The use of a high volume of industrial solid waste mineral admixture and hybrid fiber can greatly reduce the amount of cement in mortar or concrete, improve its performance, ensure the service properties of mortar or concrete, and reuse industrial solid waste to reduce the environmental burden, which has significant research significance. In this paper, the mechanical properties, wear resistance and microstructure of hybrid fiber-reinforced mortar (HFRM) with a high content of industrial solid waste mineral admixture were systematically studied under different water/binder ratios. Mineral admixtures include fly ash, silica fume and granulated blast furnace slag (slag). The total content of hybrid glass fiber (GF) and polypropylene fiber (PPF) was 2% by volume fractions, and six different water/binder ratios ranging from 0.27 to 0.62 were used. The following conclusions were drawn: fibers have a significant negative effect on the properties of mortars with a low water/binder ratio (w/b = 0.27) and high content of mineral admixtures. In general, the effect of adding hybrid fiber on improving the wear resistance of mortar is more obvious. The average residual weight of hybrid fiber-reinforced mortar is the highest after the wear resistance test. Comprehensively considering the compressive strength, flexural strength, wear resistance and microstructure of the mortar samples, G8PP2-0.40 is the optimal mix ratio. At this time, the replacement rates of fly ash, silica fume and slag are: 20%, 5% and 30%, the water/binder ratio is 0.40, and the content of GF and PPF is 1.6% and 0.4%, respectively.
In this paper, fly ash is mixed into self-flowing cement mortar by the method of equal mass substitution of cement, and the redispersible latex powder is mixed into cement mortar according to the percentage of cementitious material mass, so as to study the influence on the properties and mechanical properties of cement mortar. The test results show that the incorporation of fly ash prolongs the setting time of cement mortar and reduces the flexural strength, compressive strength, and drying shrinkage. With the increase in the content of redispersible latex powder, the setting time of cement mortar increases gradually, the compressive strength and compressive fracture resistance then decrease gradually, and the flexibility and crack resistance of the cement mortar specimen are improved. The flexural strength of the cement mortar specimen first increased and then decreased, and the drying shrinkage first decreased and then increased, indicating that the mixing amount of redispersible latex powder is not the more the better, but that there is a reasonable range to achieve the best comprehensive performance of cement mortar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.