Most LLIE algorithms focus solely on enhancing the brightness of the image and ignore the extraction of image details, leading to losing much of the information that reflects the semantics of the image, losing the edges, textures, and shape features, resulting in image distortion. In this paper, the DELLIE algorithm is proposed, an algorithmic framework with deep learning as the central premise that focuses on the extraction and fusion of image detail features. Unlike existing methods, basic enhancement preprocessing is performed first, and then the detail enhancement components are obtained by using the proposed detail component prediction model. Then, the V-channel is decomposed into a reflectance map and an illumination map by proposed decomposition network, where the enhancement component is used to enhance the reflectance map. Then, the S and H channels are nonlinearly constrained using an improved adaptive loss function, while the attention mechanism is introduced into the algorithm proposed in this paper. Finally, the three channels are fused to obtain the final enhancement effect. The experimental results show that, compared with the current mainstream LLIE algorithm, the DELLIE algorithm proposed in this paper can extract and recover the image detail information well while improving the luminance, and the PSNR, SSIM, and NIQE are optimized by 1.85%, 4.00%, and 2.43% on average on recognized datasets.
First, based on a given low-light image, moderately exposed and overexposed images are generated through the Exposure Image Prediction Model (EIPM).Then all three generate feature maps by a Feature Extraction Module (FEM),and then the feature maps of them are denoised. Subsequently, the feature map of the low-light image is fused with the feature maps of the two exposure rates images respectively. Finally, an adaptive weighted fusion method is used to obtain ultimate enhanced image. Experiments show that by comparing with the current SOTA algorithms,the proposed ELLIE algorithm, both in the detail feature retention and in color recovery have been significantly improved, and the subjective and objective evaluation indicators also have obvious advantages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.