Abstract. Let n be a positive integer. Let ξ be an algebraic real number of degree greater than n. It follows from a deep result of W. M. Schmidt that, for every positive real number ε, there are infinitely many algebraic numbers α of degree at most n such that |ξ − α| < H(α) −n−1+ε , where H(α) denotes the naïve height of α. We sharpen this result by replacing ε by a function H → ε(H) that tends to zero when H tends to infinity. We make a similar improvement for the approximation to algebraic numbers by algebraic integers, as well as for an inhomogeneous approximation problem.
This is the first in a series of papers whereby we combine the classical approach to exponential Diophantine equations (linear forms in logarithms, Thue equations, etc.) with a modular approach based on some of the ideas of the proof of Fermat's Last Theorem. In this paper we give new improved bounds for linear forms in three logarithms. We also apply a combination of classical techniques with the modular approach to show that the only perfect powers in the Fibonacci sequence are 0, 1, 8 and 144 and the only perfect powers in the Lucas sequence are 1 and 4.
This book presents state-of-the-art research on the distribution modulo one of sequences of integral powers of real numbers and related topics. Most of the results have never before appeared in one book and many of them were proved only during the last decade. Topics covered include the distribution modulo one of the integral powers of 3/2 and the frequency of occurrence of each digit in the decimal expansion of the square root of two. The author takes a point of view from combinatorics on words and introduces a variety of techniques, including explicit constructions of normal numbers, Schmidt's games, Riesz product measures and transcendence results. With numerous exercises, the book is ideal for graduate courses on Diophantine approximation or as an introduction to distribution modulo one for non-experts. Specialists will appreciate the inclusion of over 50 open problems and the rich and comprehensive bibliography of over 700 references.
Let b ≥ 2 be an integer. We prove that the b-ary expansion of every irrational algebraic number cannot have low complexity. Furthermore, we establish that irrational morphic numbers are transcendental, for a wide class of morphisms. In particular, irrational automatic numbers are transcendental. Our main tool is a new, combinatorial transcendence criterion.
Let ξ be a real number and let n be a positive integer. We define four exponents of Diophantine approximation, which complement the exponents w n (ξ) and w * n (ξ) defined by Mahler and Koksma. We calculate their six values when n = 2 and ξ is a real number whose continued fraction expansion coincides with some Sturmian sequence of positive integers, up to the initial terms. In particular, we obtain the exact exponent of approximation to such a continued fraction ξ by quadratic surds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.