Netrin-1 has been shown to be up-regulated in a fraction of human cancers as a mechanism to allow these tumors to escape the pro-apoptotic activity of some of its main dependence receptors, the UNC5 homologs (UNC5H). Here we identify the V-2 domain of netrin-1 to be important for its interaction with the Ig1/Ig2 domains of UNC5H2. We generate a humanized anti-netrin-1 antibody that disrupts the interaction between netrin-1 and UNC5H2 and triggers death of netrin-1-expressing tumor cells in vitro. We also present evidence that combining the anti-netrin-1 antibody with epidrugs such as decitabine could be effective in treating tumors showing no or modest netrin-1 expression. These results support that this antibody is a promising drug candidate.
Complement is an important component of the innate immune response with the capacity to recognize and clear infectious challenges that invade the CNS through a damaged blood brain barrier. For instance, the membrane attack complex is involved in cytotoxic and cytolytic activities while other smaller fragments lead to cell activation (chemotaxis) and phagocytosis of the intruders. It is noteworthy that there is a growing body of evidence that uncontrolled complement biosynthesis and activation in the CNS can contribute to exacerbate the neuronal loss in several neurodegenerative disorders. We provide here an insightful review of the double-edged sword activities of the local innate complement system in the CNS and discuss further the potential therapeutic avenues of delivering complement inhibitors to control brain inflammation.
Background-Atherosclerosis is a chronic inflammatory disease of the large arteries that is the primary cause of heart disease and stroke. Anti-CD3-specific antibodies suppress immune responses by antigenic modulation of the CD3 antibody/T-cell receptor complex. Their unique capacity to restore self-tolerance in a mouse model of diabetes and, importantly, in patients with recent-onset type 1 diabetes involves transforming growth factor--dependent mechanisms via expansion and/or activation of regulatory T cells. We hypothesized that treatment with anti-CD3-specific antibodies might inhibit atherosclerosis development and progression in mice. Methods and Results-Low-density lipoprotein receptor-deficient mice were fed a high-cholesterol diet for 13 or 24weeks. Anti-CD3 antibody was administered on 5 consecutive days beginning 1 week before or 13 weeks after the high-cholesterol diet was initiated, respectively. Control mice were injected in parallel with phosphate-buffered saline. Anti-CD3 antibody therapy reduced plaque development when administered before a high-cholesterol diet and markedly decreased lesion progression in mice with already established atherosclerosis. We found increased production of the antiinflammatory cytokine transforming growth factor- in concanavalin A-stimulated lymph node cells and enhanced expression of the regulatory T-cell marker Foxp3 in spleens of anti-CD3 antibody-treated mice. A higher percentage of apoptotic cells within the plaques of anti-CD3 antibody-treated mice was also observed. Conclusions-Altered disease progression, combined with the emergence of this particular cytokine pattern, indicates that short-term treatment with an anti-CD3 antibody induces a regulatory T-cell phenotype that restores self-tolerance in a mouse model of atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.