The relationships between cerebrospinal fluid (CSF) and brain interstitial fluid are still being elucidated. It has been proposed that CSF within the subarachnoid space will enter paravascular spaces along arteries to flush through the parenchyma of the brain. However, CSF also directly exits the subarachnoid space through the cribriform plate and other perineural routes to reach the lymphatic system. In this study, we aimed to elucidate the functional relationship between CSF efflux through lymphatics and the potential influx into the brain by assessment of the distribution of CSF-infused tracers in awake and anesthetized mice. Using near-infrared fluorescence imaging, we showed that tracers quickly exited the subarachnoid space by transport through the lymphatic system to the systemic circulation in awake mice, significantly limiting their spread to the paravascular spaces of the brain. Magnetic resonance imaging and fluorescence microscopy through the skull under anesthetized conditions indicated that tracers remained confined to paravascular spaces on the surface of the brain. Immediately after death, a substantial influx of tracers occurred along paravascular spaces extending into the brain parenchyma. We conclude that under normal conditions a rapid CSF turnover through lymphatics precludes significant bulk flow into the brain.Electronic supplementary materialThe online version of this article (10.1007/s00401-018-1916-x) contains supplementary material, which is available to authorized users.
The pathways of circulation and clearance of cerebrospinal fluid (CSF) in the spine have yet to be elucidated. We have recently shown with dynamic in vivo imaging that routes of outflow of CSF in mice occur along cranial nerves to extracranial lymphatic vessels. Here, we use near-infrared and magnetic resonance imaging to demonstrate the flow of CSF tracers within the spinal column and reveal the major spinal pathways for outflow to lymphatic vessels in mice. We found that after intraventricular injection, a spread of CSF tracers occurs within both the central canal and the spinal subarachnoid space toward the caudal end of the spine. Outflow of CSF tracers from the spinal subarachnoid space occurred predominantly from intravertebral regions of the sacral spine to lymphatic vessels, leading to sacral and iliac LNs. Clearance of CSF from the spine to lymphatic vessels may have significance for many conditions, including multiple sclerosis and spinal cord injury.
Glioblastoma is a malignant brain tumor with mean overall survival of less than 15 months. Blood vessel leakage and peritumoral edema lead to increased intracranial pressure and augment neurological deficits which profoundly decrease the quality of life of glioblastoma patients. It is unknown how the dynamics of cerebrospinal fluid (CSF) turnover are affected during this process. By monitoring the transport of CSF tracers to the systemic blood circulation after infusion into the cisterna magna, we demonstrate that the outflow of CSF is dramatically reduced in glioma-bearing mice. Using a combination of magnetic resonance imaging (MRI) and near-infrared (NIR) imaging, we found that the circulation of CSF tracers was hindered after cisterna magna injection with reduced signals along the exiting cranial nerves and downstream lymph nodes, which represent the major CSF outflow route in mice. Due to blockage of the normal routes of CSF bulk flow within and from the cranial cavity, CSF tracers were redirected into the spinal space. In some mice, impaired CSF clearance from the cranium was compensated by a lymphatic outflow from the sacral spine.
Alzheimer’s disease (AD) is characterized by intracellular neurofibrillary tangles. The primary component, hyperphosphorylated Tau (p-Tau), contributes to neuronal death. Recent studies have shown that autophagy efficiently degrades p-Tau, but the mechanisms modulating autophagy and subsequent p-Tau clearance in AD remain unclear. In our study, we first analyzed the relationship between the inflammatory activation and autophagy in brains derived from aged mice and LPS-injected inflammatory mouse models. We found that inflammatory activation was essential for activation of autophagy in the brain, which was neuronal ATG5-dependent. Next, we found that autophagy in cultured neurons was enhanced by LPS treatment of cocultured macrophages. In further experiments designed to provoke chronic mild stimulation of TLR4 without inducing obvious neuroinflammation, we gave repeated LPS injections (i.p., 0.15 mg/kg, weekly for 3 mo) to transgenic mice overexpressing human Tau mutant (P301S) in neurons. We observed significant enhancement of neuronal autophagy, which was associated with a reduction of cerebral p-Tau proteins and improved cognitive function. In summary, these results show that neuroinflammation promotes neuronal autophagy and that chronic mild TLR4 stimulation attenuates AD-related tauopathy, likely by activating neuronal autophagy. Our study displays the beneficial face of neuroinflammation and suggests a possible role in the treatment of AD patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.