Downy mildews are obligate biotrophic oomycete pathogens that cause devastating plant diseases on economically important crops. Plasmopara viticola is the causal agent of grapevine downy mildew, a major disease in vineyards worldwide. We sequenced the genome of Pl. viticola with PacBio long reads and obtained a new 92.94 Mb assembly with high contiguity (359 scaffolds for a N50 of 706.5 kb) due to a better resolution of repeat regions. This assembly presented a high level of gene completeness, recovering 1,592 genes encoding secreted proteins involved in plant–pathogen interactions. Plasmopara viticola had a two-speed genome architecture, with secreted protein-encoding genes preferentially located in gene-sparse, repeat-rich regions and evolving rapidly, as indicated by pairwise dN/dS values. We also used short reads to assemble the genome of Plasmopara muralis, a closely related species infecting grape ivy (Parthenocissus tricuspidata). The lineage-specific proteins identified by comparative genomics analysis included a large proportion of RxLR cytoplasmic effectors and, more generally, genes with high dN/dS values. We identified 270 candidate genes under positive selection, including several genes encoding transporters and components of the RNA machinery potentially involved in host specialization. Finally, the Pl. viticola genome assembly generated here will allow the development of robust population genomics approaches for investigating the mechanisms involved in adaptation to biotic and abiotic selective pressures in this species.
Adaptation produces hard or soft selective sweeps depending on the supply of adaptive genetic polymorphism. The evolution of pesticide resistance in parasites is a striking example of rapid adaptation that can shed light on selection processes. Plasmopara viticola, which causes grapevine downy mildew, forms large populations, in which resistance has rapidly evolved due to excessive fungicide use. We investigated the pathways by which fungicide resistance has evolved in this plant pathogen, to determine whether hard or soft selective sweeps were involved. An analysis of nucleotide polymorphism in 108 field isolates from the Bordeaux region revealed recurrent mutations of cytb and CesA3 conferring resistance to quinone outside inhibiting (QoI) and carboxylic acid amide (CAA) fungicides, respectively. Higher levels of genetic differentiation were observed for nucleotide positions involved in resistance than for neutral microsatellites, consistent with local adaptation of the pathogen to fungicide treatments. No hitchhiking was found between selected sites and neighbouring polymorphisms in cytb and CesA3, confirming multiple origins of resistance alleles. We assessed resistance costs, by evaluating the fitness of the 108 isolates through measurements of multiple quantitative pathogenicity traits under controlled conditions. No significant differences were found between sensitive and resistant isolates, suggesting that fitness costs may be absent or negligible. Our results indicate that the rapid evolution of fungicide resistance in P. viticola has involved a soft sweep.
Plasmopara viticola is a biotrophic pathogenic oomycete responsible for grapevine downy mildew. We present here the first draft of the P. viticola genome. Analysis of this sequence will help in understanding plant-pathogen interactions in oomycetes, especially pathogen host specialization and adaptation to host resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.