BackgroundThe heterokonts are a particularly interesting group of eukaryotic organisms; they include many key species of planktonic and coastal algae and several important pathogens. To understand the biology of these organisms, it is necessary to be able to predict the subcellular localisation of their proteins but this is not straightforward, particularly in photosynthetic heterokonts which possess a complex chloroplast, acquired as the result of a secondary endosymbiosis. This is because the bipartite target peptides that deliver proteins to these chloroplasts can be easily confused with the signal peptides of secreted proteins, causing currently available algorithms to make erroneous predictions. HECTAR, a subcellular targeting prediction method which takes into account the specific properties of heterokont proteins, has been developed to address this problem.ResultsHECTAR is a statistical prediction method designed to assign proteins to five different categories of subcellular targeting: Signal peptides, type II signal anchors, chloroplast transit peptides, mitochondrion transit peptides and proteins which do not possess any N-terminal target peptide. The recognition rate of HECTAR is 96.3%, with Matthews correlation coefficients ranging from 0.67 to 0.95. The method is based on a hierarchical architecture which implements the divide and conquer approach to identify the different possible target peptides one at a time. At each node of the hierarchy, the most relevant outputs of various existing subcellular prediction methods are combined by a Support Vector Machine.ConclusionThe HECTAR method is able to predict the subcellular localisation of heterokont proteins with high accuracy. It also efficiently predicts the subcellular localisation of proteins from cryptophytes, a group that is phylogenetically close to the heterokonts. A variant of HECTAR, called HECTARSEC, can be used to identify signal peptide and type II signal anchor sequences in proteins from any eukaryotic organism. Both HECTAR and HECTARSEC are available as a web application at the following address: .
The prediction is freely available over the Internet on the Network Protein Sequence Analysis (NPS@) WWW server at http://pbil.ibcp.fr/NPSA/npsa_server.ht ml. The source code of the combiner can be obtained on request for academic use.
Background: Membrane proteins are estimated to represent about 25% of open reading frames in fully sequenced genomes. However, the experimental study of proteins remains difficult. Considerable efforts have thus been made to develop prediction methods. Most of these were conceived to detect transmembrane helices in polytopic proteins. Alternatively, a membrane protein can be monotopic and anchored via an amphipathic helix inserted in a parallel way to the membrane interface, so-called in-plane membrane (IPM) anchors. This type of membrane anchor is still poorly understood and no suitable prediction method is currently available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.