O‐GlcNAcylation is a ubiquitous post‐translational modification that is extremely labile and plays a significant role in physiology, including the heart. Sustained activation of cardiac O‐GlcNAcylation is frequently associated with alterations in cellular metabolism, leading to detrimental effects on cardiovascular function. This is particularly true during conditions such as diabetes, hypertension, cardiac remodelling, heart failure and arrhythmogenesis. Paradoxically, transient elevation of cardiac protein O‐GlcNAcylation can also exert beneficial effects in the heart. There is compelling evidence to suggest that a complex interaction between O‐GlcNAcylation and phosphorylation also exists in the heart. Beyond direct functional consequences on cardiomyocytes, O‐GlcNAcylation also acts indirectly by altering the function of transcription factors that affect downstream signalling. This review focuses on the potential cardioprotective role of protein O‐GlcNAcylation during ischaemia‐reperfusion injury, the deleterious consequences of chronically elevated O‐GlcNAc levels, the interplay between O‐GlcNAcylation and phosphorylation in the cardiomyocytes and the effects of O‐GlcNAcylation on other major non‐myocyte cell types in the heart.
Systolic and diastolic dysfunction in diabetes have frequently been associated with abnormal calcium (Ca2+) regulation. However, there is emerging evidence that Ca2+ mishandling alone is insufficient to fully explain diabetic heart dysfunction, with focus shifting to the properties of the myofilament proteins. Our aim was to examine the effects of diabetes on myofilament Ca2+ sensitivity and Ca2+ handling in left ventricular tissues isolated from the same type 2 diabetic rat hearts. We measured the force-pCa relationship in skinned left ventricular cardiomyocytes isolated from 20-week-old type 2 diabetic and non-diabetic rats. Myofilament Ca2+ sensitivity was greater in the diabetic relative to non-diabetic cardiomyocytes, and this corresponded with lower phosphorylation of cardiac troponin I (cTnI) at ser23/24 in the diabetic left ventricular tissues. Protein expression of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), phosphorylation of phospholamban (PLB) at Ser16, and SERCA/PLB ratio were lower in the diabetic left ventricular tissues. However, the maximum SERCA Ca2+ uptake rate was not different between the diabetic and non-diabetic myocardium. Our data suggest that impaired contractility in the diabetic heart is not caused by SERCA Ca2+ mishandling. This study highlights the important role of the cardiac myofilament and provides new insight on the pathophysiology of diabetic heart dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.