This study aimed at evaluating the effects of mental and muscle fatigue on table tennis performance. Mental fatigue (MF) was induced by completion of 90 minutes of the AX-CPT; muscle fatigue was induced by completion of an eccentric exercise performed with the elbow flexors (biceps fatigue, BF) or the knee extensors (quadriceps fatigue, QF). The control condition consisted of watching a movie. Stroke parameters (speed and accuracy of the ball), as well as feelings of fatigue and force production capacity of the elbow flexors (BF, MF and control conditions) and knee extensors (QF condition), were assessed pre and post fatigue protocols. Feelings of fatigue increased post fatigue protocols. Force production capacity decreased only in the BF and QF conditions. BF and MF induced a decrease in accuracy. This decrease in accuracy was associated with an increased ball speed in the BF condition, and a decreased ball speed in the MF condition. QF had a negligible effect on stroke performance. Our results suggest that both mental fatigue, and muscle fatigue, significantly impair table tennis performance and therefore coaches should take into account both the physical and mental state of table tennis players to optimize performance.
Results suggest that the specific test appears to be a simple and sensitive procedure to assess stroke performance in table tennis and that this test could be a relevant tool for coaches in table tennis.
This study aimed to compare the muscle activity of lower limbs across typical table tennis strokes. Fourteen high-level players participated in this study in which five typical strokes (backhand top, forehand top, forehand spin, forehand smash, flick) were analysed. Surface electromyography activity (EMG) of eight muscles was recorded (gluteus maximus, biceps femoris, vastus medialis, vastus lateralis, rectus femoris, gastrocnemius medialis, gastrocnemius lateralis, soleus) and normalised to the maximal activity measured during squat jump or isometric maximal voluntary contractions. The forehand spin, the forehand top and the forehand smash exhibited significant higher EMG amplitude when compared with other strokes. Both biceps femoris and gluteus maximus were strongly activated during the smash, forehand spin and forehand top (from 62.8 to 91.7% of maximal EMG activity). Both vastii and rectus femoris were moderately to strongly activated during the forehand spin (from 50.4 to 62.2% of maximal EMG activity) whereas gastrocnemii and soleus exhibited the highest level of activity during the smash (from 67.1 to 92.1% of maximal EMG activity). Our study demonstrates that offensive strokes, such as smash or forehand top, exhibit higher levels of activity than other strokes.
Your article is protected by copyright and all rights are held exclusively by Springer-Verlag GmbH Germany, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com".
Reaction time (RT) is classically divided into premotor time (PMT) and electromechanical delay (EMD). However, the determination of the onset of electromyographic activity (EMG) during voluntary contraction remains questionable. In addition, the reliability of RT, PMT and EMD needs to be determined. Twelve participants performed two sessions of RT trials, separated by 5 min. RT was evaluated during voluntary isometric contractions of the elbow flexors, i.e., time between a light signal (stimulus) and the onset of the mechanical response. To assess EMD, an electrode array (64 channels) was used to accurately detect the onset of EMG activity. PMT represented the major part of the RT (~88%). Coefficients of variation were reasonably satisfactory for all parameters (range: 11·9-13·4%). The use of electrode array appears to be a relevant method to measure EMD. Moreover, sessions based on two trials are reliable enough to detect changes in RT components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.