We define the coarse Ricci curvature of metric spaces in terms of how much small balls are closer (in Wasserstein transportation distance) than their centers are. This definition naturally extends to any Markov chain on a metric space. For a Riemannian manifold this gives back, after scaling, the value of Ricci curvature of a tangent vector. Examples of positively curved spaces for this definition include the discrete cube and discrete versions of the Ornstein-Uhlenbeck process. Moreover this generalization is consistent with the Bakry-Émery Ricci curvature for Brownian motion with a drift on a Riemannian manifold.Positive Ricci curvature is shown to imply a spectral gap, a Lévy-Gromov-like Gaussian concentration theorem and a kind of modified logarithmic Sobolev inequality. The bounds obtained are sharp in a variety of examples.
We provide explicit nonasymptotic estimates for the rate of convergence of empirical means of Markov chains, together with a Gaussian or exponential control on the deviations of empirical means. These estimates hold under a "positive curvature" assumption expressing a kind of metric ergodicity, which generalizes the Ricci curvature from differential geometry and, on finite graphs, amounts to contraction under path coupling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.