Solid-state refrigeration technology based on caloric effects are promising to replace the currently used vapor compression cycles. However, their application is restricted due to limited performances of caloric materials. Here, we have identified colossal barocaloric effects (CBCEs) in a class of disordered solids called plastic crystals. The obtained entropy changes are about 380 J kg -1 K -1 in the representative neopentylglycol around room temperature. Inelastic neutron scattering reveals that the CBCEs in plastic crystals are attributed to the combination of the vast molecular orientational disorder, giant compressibility and high anharmonic lattice dynamics. Our study establishes the microscopic scenario for CBCEs in plastic crystals and paves a new route to the next-generation solid-state refrigeration technology.
Water is the only available fossil-free source of hydrogen. Splitting water electrochemically is among the most used techniques, however, it accounts for only 4% of global hydrogen production. One of the reasons is the high cost and low performance of catalysts promoting the oxygen evolution reaction (OER). Here, we report a highly efficient catalyst in acid, that is, solid-solution Ru‒Ir nanosized-coral (RuIr-NC) consisting of 3 nm-thick sheets with only 6 at.% Ir. Among OER catalysts, RuIr-NC shows the highest intrinsic activity and stability. A home-made overall water splitting cell using RuIr-NC as both electrodes can reach 10 mA cm−2geo at 1.485 V for 120 h without noticeable degradation, which outperforms known cells. Operando spectroscopy and atomic-resolution electron microscopy indicate that the high-performance results from the ability of the preferentially exposed {0001} facets to resist the formation of dissolvable metal oxides and to transform ephemeral Ru into a long-lived catalyst.
Electron-diffraction and high-resolution lattice images reveal superstructure stripes with wave vectors of (1/3, 0, 1/3) and (-1/3, 0, 1/3), which are associated with the ordered arrangement of F(-). Charge density distribution suggests that these stripes manifest themselves electronically as F(-)-Cr(3+)-F(-) zigzag chains, driven by the anisotropic charge interaction of F(-) anions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.