Novel host materials and their molecular design methods for phosphorescent materials are crucial for the application of phosphorescent organic light emitting diodes (PhOLEDs), which require balanced carrier injection and sufficient triplet energy levels (ET). Herein, two host materials, namely PPI22PPPBO and PPI33PPPBO, are designed by varying the linkage of benzoxazole (PBO) and phenanthroimidazole (PPI) groups with appropriate ET for green, yellow, and red phosphors. The meta‐link PPI33PPPBO is not only of smaller π‐conjugation, but also of more ordered face‐to‐face stacking for enhanced and more balanced carrier mobility. As a result, the green, yellow, and red PhOLEDs utilizing PPI33PPPBO as host materials show low turn‐on voltages of 2.8 V. The maximum external quantum efficiency (EQEmax) of the corresponding devices reaches 22.8%, 26.7%, and 17.6%, which is superior to that of the traditional host materials CBP and mCP, showing great application potential. More importantly, when the luminance is 1000 cd m−2, their EQE can still be as high as 21.9%, 25.5%, and 16.4%, corresponding to negligible efficiency roll‐offs of only 3.9%, 4.5%, and 6.8%. To the best of authors knowledge, it is the first time that PBO is applied to PhOLED host materials using a twisted connection method.
High efficiency and high color purity are two key factors for achieving non-doped deep-blue organic light-emitting diodes (OLEDs). Herein, a novel emitter 3,6-di-tert-butyl-9-(4'-(4,5-diphenyl-4H-1,2,4-triazol-3-yl)-[1,1'-biphenyl]-4-yl)-9H-carbazole (DTPCZTZ) with a weak donor-acceptor structure containing...
Pure blue emitters have become a research hotspot in the field of organic light-emitting diodes (OLEDs). Achieving high-performance pure blue OLEDs is still a challenge from the perspective of molecular...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.