Two-dimensional three-temperature (2-D 3-T) radiation diffusion equations are widely used to approximately describe the evolution of radiation energy within a multi-material system and explain the exchange of energy among electrons, ions and photons. Their highly nonlinear, strong discontinuous and tightly coupled phenomena always make the numerical solution of such equations extremely challenging. In this paper, we construct two finite volume element schemes both satisfying the discrete conservation property. One of them can well preserve the positivity of analytical solutions, while the other one does not satisfy this property. To fix this defect, two as repair techniques are designed. In addition, as the numerical simulation of 2-D 3-T equations is very time consuming, we also devise a mesh adaptation algorithm to reduce the cost. Numerical results show that these new methods are practical and efficient in solving this kind of problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.