Several studies have suggested that long intergenic noncoding RNAs are involved in the progression of diabetic nephropathy (DN). However, the exact role and regulatory mechanism of long noncoding RNA (lncRNA) NR_038323 in diabetic nephropathy (DN) remain largely unclear. In the present study, we found that lncRNA NR_038323 overexpression ameliorated the high glucose (HG)-induced expression levels of collagen I, collagen IV, and fibronectin, whereas lncRNA NR_038323 knockdown exerted the opposite effects. Moreover, the results of bioinformatic prediction, luciferase assay, and fluorescence in situ hybridization (FISH) demonstrated that lncRNA NR_038323 directly interacted with miR-324-3p. Additionally, miR-324-3p mimic aggravated the HG-induced expression levels of collagen I, collagen IV, and fibronectin by dual-specificity protein phosphatase-1 (DUSP1) expression to activate p38 mitogenactivated protein kinase (MAPK) and ERK1/2 pathways. In contrast, overexpression of DUSP1 attenuated the HG-induced expression levels of collagen I, collagen IV, and fibronectin via inactivation of p38 MAPK and ERK1/2 pathways. In addition, lncRNA NR_038323 knockdown increased the expression levels of collagen I, collagen IV, and fibronectin by upregulating DUSP1 expression during HG treatment, which were markedly reversed by miR-324-3p inhibitor. Furthermore, these molecular changes were verified in the human kidney samples of DN patients. Finally, overexpression of lncRNA NR_038323 ameliorated the interstitial fibrosis in STZ-induced diabetic nephrology (DN) rat via miR-324-3p/DUSP1/p38MAPK and ERK1/2 axis. In conclusion, our data indicate that overexpression of lncRNA NR_038323 may suppress HG-induced renal fibrosis via the miR-324-3p/DUSP1/p38MAPK and ERK1/2 axis, which provides new insights into the pathogenesis of DN.
Recent studies reported that DNA methylation was involved in retinal cell death. Methyl-CpG binding domain protein 2 (Mbd2) is one of the DNA methylation readers. Its role and mechanism of regulation remain unclear. The ischemia/reperfusion (I/R) model in mice primary culture retinal ganglion cells (RGCs) and Mbd2 knockout (Mbd2-KO) mice was used in the current study. We demonstrated that Mbd2 mediates RGC apoptosis caused by I/R injury. Mechanistically, the data suggested that Mbd2 upregulated Mbd2-associated long noncoding RNA 1 (Mbd2-AL1) via demethylation of its promoter. Furthermore, Mbd2-AL1 sponged microRNA (miR)-188-3p, thus preventing tumor necrosis factor (TNF) receptor-associated factor 3 (Traf3) downregulation and inducing RGC apoptosis. This was further demonstrated by the fact that inhibition of miR-188-3p diminished the anti-apoptosis role of Mbd2-AL1 small interfering RNA (siRNA). Finally, it showed that the apoptosis of retinal cells was attenuated, and the visual function was preserved in Mbd2-KO mice, which were associated with the Mbd2-AL1/miR-188-3p/Traf3 axis. Our present study revealed the role of Mbd2 in RGC apoptosis, which may provide a novel therapeutic strategy for retinal ischemic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.