Endothelial-to-mesenchymal transition (EnMT) is a cell transformation process involved in both morphogenesis and pathogenesis. EnMT of corneal endothelial cells happens after endothelial injury and during ex vivo culture. Previous studies have shown that the transforming growth factor-β signaling pathway is involved in this transition. In this study, we found that rat corneal endothelial cells could spontaneously undergo EnMT during ex vivo culture. This change in rat corneal endothelial cells was associated with Notch signaling pathway activation after the first passage, which was blocked by the Notch inhibitor N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT). This inhibitor also prevented transforming growth factor β1-, β2-, and β3-induced EnMT and reversed transformed rat corneal endothelial cells to a normal phenotype. Furthermore, DAPT treatment blocked retrocorneal membrane formation in a rat corneal endothelium damage model. Our study indicates that the Notch signaling pathway is involved in the corneal EnMT process, which may be a novel therapeutic target for treating corneal endothelial fibrogenic disorders.
Decellularization can reduce the immune barrier of xenotransplantation, but tissue swelling‐caused structural and functional damage remains unsolved, including corneal transparency loss after decellularization. Here, a protective decellularization strategy is developed for the preparation of decellularized porcine cornea (DPC), in which corneas are treated by detergent and endonuclease in the protective medium with 50 mmHg colloid osmotic pressure. A nonrandomized open‐label trial is conducted to evaluate the clinical outcome of lamellar transplantation with DPC versus human donor cornea (HDC) as grafts. Through the protective corneal decellularization, major xenoantigen DNA and α‐gal are efficiently removed, while corneal original structural and transparency characteristics are preserved. Among the 23 patients with DPC transplantation for 12 months, 22 grafts survive without ulcer recurrence or immune rejection, 1 graft demonstrate melting. Compared with HDC grafts, DPC grafts showed early suture loosing, but no complication is observed with timely removal. The epithelial regeneration rate, graft transparency restoration, best‐corrected visual acuity improvement, and mechanical properties achieve equivalent levels compared with that of HDC grafts. Collectively, the results suggest that the porcine cornea through protective decellularization may provide an effective “off‐the‐shelf” substitute of globally‐shortened human donor tissue for lamellar transplantation.
Objective. To evaluate the therapeutic effect of big bubble deep anterior lamellar keratoplasty (DALK) in patients with deep fungal keratitis. Methods.Consecutive patients who had DALK for deep fungal keratitis at Shandong Eye Hospital between July 2011 and December 2012 were included. In all patients, the infiltration depth was more than 4/5ths of the corneal thickness. DALK surgery was performed with bare Descemet membrane (DM) using the big bubble technique. Corrected distance visual acuity (CDVA), graft status, and intraoperative and postoperative complications were monitored. Results. Big bubble DALK was performed in 23 patients (23 eyes). Intraoperative perforation of the DM occurred in two eyes (8.7%) during stromal dissection. The patients received lamellar keratoplasty with an air bubble injected into the anterior chamber. Double anterior chamber formed in 3 eyes (13.0%). Mean CDVA of the patients without cataract, amblyopia, and fungal recurrence was improved from preoperative HM/20 cm−1.0 (LogMAR) to 0.23 ± 0.13 (LogMAR) at the last followup (P < 0.01). Fungal recurrence was found in two patients (8.7%). Corneal stromal graft rejection was noted in one patient (4.3%). Conclusions. DALK using the big bubble technique seems to be effective and safe in the treatment of deep fungal keratitis unresponsive to medication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.