Pesticides play an important role in crop disease and pest control. However, their irrational use leads to the emergence of drug resistance. Therefore, it is necessary to search for new pesticide-lead compounds with new structures. We designed and synthesized 33 novel pyrimidine derivatives containing sulfonate groups and evaluated their antibacterial and insecticidal activities. Results: Most of the synthesized compounds showed good antibacterial activity against Xanthomonas oryzae pv. Oryzae (Xoo), Xanthomonas axonopodis pv. Citri (Xac), Pseudomonas syringae pv. actinidiae (Psa) and Ralstonia solanacearum (Rs), and certain insecticidal activity. A5, A31 and A33 showed strong antibacterial activity against Xoo, with EC50 values of 4.24, 6.77 and 9.35 μg/mL, respectively. Compounds A1, A3, A5 and A33 showed remarkable activity against Xac (EC50 was 79.02, 82.28, 70.80 and 44.11 μg/mL, respectively). In addition, A5 could significantly improve the defense enzyme (superoxide dismutase, peroxidase, phenylalanine ammonia-lyase and catalase) activity of plants against pathogens and thus improve the disease resistance of plants. Moreover, a few compounds also showed good insecticidal activity against Plutella xylostella and Myzus persicae. The results of this study provide insight into the development of new broad-spectrum pesticides.
Tea green leafhopper (Empoasca onukii Matsuda) is a critical pest in tea production. Wolbachia has attracted much attention as a new direction of pest biological control for its ability of manipulating the hosts’ reproductive biology. In this work, we focused on the detection of Wolbachia in tea green leafhopper and its effect on host reproduction and development. Polymerase chain reaction (PCR), real-time PCR, and fluorescence in situ hybridization (FISH) techniques were used to detect the distribution of Wolbachia in tea green leafhopper. Wolbachia infection levels were different in different organs of hosts in different insect stages. In addition, comparison between the infected populations and cured population (treated by tetracyclines) revealed that presence of Wolbachia apparently influenced the growth, life cycle, and other reproductive factors of tea green leafhopper, caused, for example, by cytoplasmic incompatibility (CI), thereby reducing number of offspring, shortening lifespan, and causing female-biased sex ratio. This research confirmed that the bacteria Wolbachia was of high incidence in tea leafhoppers and could significantly affect the hosts’ reproductive development and evolution.
Chitosan oligosaccharide (COS) plays an important role in the growth and development of tea plants. However, responses in tea plants trigged by COS have not been thoroughly investigated. In this study, we integrated transcriptomics and metabolomics analysis to understand the mechanisms of chitosan-induced tea quality improvement and growth promotion. The combined analysis revealed an obvious link between the flourishing development of the tea plant and the presence of COS. It obviously regulated the growth and development of the tea and the metabolomic process. The chlorophyll, soluble sugar, and amino acid content in the tea leaves was increased. The phytohormones, carbohydrates, and amino acid levels were zoomed-in in both transcript and metabolomics analyses compared to the control. The expression of the genes related to phytohormones transduction, carbon fixation, and amino acid metabolism during the growth and development of tea plants were significantly upregulated. Our findings indicated that alerted transcriptomic and metabolic responses occurring with the application of COS could cause efficiency in substrates in pivotal pathways and hence, elicited plant growth.
Camellia spiny whitefly, Aleurocanthus camelliae (Hemiptera: Aleyrodidae), is a major pest in tea, which poses a serious threat to tea production. Similar to many insects, various bacterial symbioses inside A. camelliae may participate in the reproduction, metabolism, and detoxification of the host. However, few reports included research on the microbial composition and influence on A. camelliae growth. We first applied high-throughput sequencing of the V4 region in the 16S rRNA of symbiotic bacteria to study its component and effect on the biological trait of A. camelliae by comparing it with the antibiotic treatment group. The population parameters, survival rate, and fecundity rate of A. camelliae were also analyzed using the age–stage two-sex life table. Our results demonstrated that phylum Proteobacteria (higher than 96.15%) dominated the whole life cycle of A. camelliae. It unveiled the presence of Candidatus Portiera (primary endosymbiont) (67.15–73.33%), Arsenophonus (5.58–22.89%), Wolbachia (4.53–11.58%), Rickettsia (0.75–2.59%), and Pseudomonas (0.99–1.88%) genus. Antibiotic treatment caused a significant decrease in the endosymbiont, which negatively affected the host's biological properties and life process. For example, 1.5% rifampicin treatment caused a longer preadult stage in the offspring generation (55.92 d) compared to the control (49.75d) and a lower survival rate (0.36) than the control (0.60). The decreased intrinsic rate of increase (r), net reproductive rate (R0), and prolonged mean generation time (T) were signs of all disadvantageous effects associated with symbiotic reduction. Our findings confirmed the composition and richness of symbiotic bacteria in larva and adult of A. camelliae by an Illumina NovaSeq 6000 analysis and their influence on the development of the host by demographic research. Together, the results suggested that symbiotic bacteria play an important role in manipulating the biological development of their hosts, which might help us for developing new pest control agents and technologies for better management of A. camelliae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.