Stroke is one of the leading causes for disability worldwide. Motor function deficits due to stroke affect the patients' mobility, their limitation in daily life activities, their participation in society and their odds of returning to professional activities. All of these factors contribute to a low overall quality of life. Rehabilitation training is the most effective way to reduce motor impairments in stroke patients. This multiple systematic review focuses both on standard treatment methods and on innovating rehabilitation techniques used to promote upper extremity motor function in stroke patients. A total number of 5712 publications on stroke rehabilitation was systematically reviewed for relevance and quality with regards to upper extremity motor outcome. This procedure yielded 270 publications corresponding to the inclusion criteria of the systematic review. Recent technology-based interventions in stroke rehabilitation including non-invasive brain stimulation, robot-assisted training, and virtual reality immersion are addressed. Finally, a decisional tree based on evidence from the literature and characteristics of stroke patients is proposed. At present, the stroke rehabilitation field faces the challenge to tailor evidence-based treatment strategies to the needs of the individual stroke patient. Interventions can be combined in order to achieve the maximal motor function recovery for each patient. Though the efficacy of some interventions may be under debate, motor skill learning, and some new technological approaches give promising outcome prognosis in stroke motor rehabilitation.
The findings suggest that combined upper and lower extremity in an intensive training protocol may be efficacious for improving both upper and lower extremity function in children with USCP.
Background Intensive bimanual therapy can improve hand function in children with unilateral spastic cerebral palsy (USCP). We compared the effects of structured bimanual skill training vs. unstructured bimanual practice on motor outcomes and motor map plasticity in children with USCP. Objective We hypothesized that structured skill training would produce greater motor map plasticity than unstructured practice. Methods Twenty children with USCP (average age 9,5; 12 males) received therapy in a day-camp-setting, 6 h/day, 5 days/week, for 3 weeks. In structured skill training (n=10), children performed progressively more difficult movements and practiced functional goals. In unstructured practice (n=10), children engaged in bimanual activities but did not practice skillful movements or functional goals. We used the Assisting Hand Assessment (AHA), Jebsen-Taylor test of Hand Function (JTTHF) and Canadian Occupational Performance Measure (COPM) to measure hand function. We used single-pulse transcranial magnetic stimulation (TMS) to map the representation of first dorsal interosseous (FDI) and flexor carpi radialis (FCR) muscles bilaterally. Results Both groups showed significant improvements in bimanual hand use (AHA; p<0.05) and hand dexterity (JTTHF; p<0.001). However, only the structured skill group showed increases in the size of the affected hand motor map and amplitudes of motor evoked potentials (p<0.01). Most children who showed the most functional improvements (COPM) had the largest changes in map size. Conclusions These findings uncover a dichotomy of plasticity: the unstructured practice group improved hand function but did not show changes in motor maps. Skill training is important for driving motor cortex plasticity in children with USCP.
HABIT-ILE is efficacious for improving both upper- and lower-extremity function in children with bilateral CP.
OBJECTIVES: Precision grasping critically relies on the integrity of the corticospinal tract as evidenced in congenital hemiplegia by the correlation found between corticospinal dysgenesis and hand-movement deficits. Therefore, corticospinal dysgenesis could be used to anticipate upper-limb deficits in young infants with congenital hemiplegia. However, most studies have quantified corticospinal dysgenesis by measuring the cross-sectional area of cerebral peduncles on T1 MRI, a measure biased by other structures present in the peduncles. The purpose of this study was to evaluate the extent to which this may have hampered the conclusions of previous studies. We also aimed to investigate the relationship between upper-limb deficits and a more accurate measure of corticospinal dysgenesis to provide a tool for anticipating upper-limb deficits in infants with congenital hemiplegia. METHODS: To address this issue, we measured corticospinal tract areas in 12 patients with congenital hemipleg... Document type : Article de périodique (Journal article) Référence bibliographiqueBleyenheuft, Yannick ; Grandin, Cécile ; Cosnard, Guy ; Olivier, Etienne ; Thonnard, Jean-Louis. The authors have indicated they have no financial relationships relevant to this article to disclose. Corticospinal dysgenesis and upper-limb deficits in congenital hemiplegia ABSTRACTOBJECTIVES. Precision grasping critically relies on the integrity of the corticospinal tract as evidenced in congenital hemiplegia by the correlation found between corticospinal dysgenesis and hand-movement deficits. Therefore, corticospinal dysgenesis could be used to anticipate upper-limb deficits in young infants with congenital hemiplegia. However, most studies have quantified corticospinal dysgenesis by measuring the cross-sectional area of cerebral peduncles on T1 MRI, a measure biased by other structures present in the peduncles. The purpose of this study was to evaluate the extent to which this may have hampered the conclusions of previous studies. We also aimed to investigate the relationship between upper-limb deficits and a more accurate measure of corticospinal dysgenesis to provide a tool for anticipating upper-limb deficits in infants with congenital hemiplegia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.