Purpose To develop and evaluate a fast and effective method for deblurring spiral real‐time MRI (RT‐MRI) using convolutional neural networks. Methods We demonstrate a 3‐layer residual convolutional neural networks to correct image domain off‐resonance artifacts in speech production spiral RT‐MRI without the knowledge of field maps. The architecture is motivated by the traditional deblurring approaches. Spatially varying off‐resonance blur is synthetically generated by using discrete object approximation and field maps with data augmentation from a large database of 2D human speech production RT‐MRI. The effect of off‐resonance range, shift‐invariance of blur, and readout durations on deblurring performance are investigated. The proposed method is validated using synthetic and real data with longer readouts, quantitatively using image quality metrics and qualitatively via visual inspection, and with a comparison to conventional deblurring methods. Results Deblurring performance was found superior to a current autocalibrated method for in vivo data and only slightly worse than an ideal reconstruction with perfect knowledge of the field map for synthetic test data. Convolutional neural networks deblurring made it possible to visualize articulator boundaries with readouts up to 8 ms at 1.5 T, which is 3‐fold longer than the current standard practice. The computation time was 12.3 ± 2.2 ms per frame, enabling low‐latency processing for RT‐MRI applications. Conclusion Convolutional neural networks deblurring is a practical, efficient, and field map‐free approach for the deblurring of spiral RT‐MRI. In the context of speech production imaging, this can enable 1.7‐fold improvement in scan efficiency and the use of spiral readouts at higher field strengths such as 3 T.
The proposed model-based DCE-MRI reconstruction enables the use of different TK solvers with a model consistency constraint and enables joint estimation of patient-specific AIF. TK maps and patient-specific AIF with high fidelity can be reconstructed at up to 100-fold undersampling in k,t-space. Magn Reson Med 79:2804-2815, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Real-time magnetic resonance imaging (RT-MRI) of human speech production is enabling significant advances in speech science, linguistics, bio-inspired speech technology development, and clinical applications. Easy access to RT-MRI is however limited, and comprehensive datasets with broad access are needed to catalyze research across numerous domains. The imaging of the rapidly moving articulators and dynamic airway shaping during speech demands high spatio-temporal resolution and robust reconstruction methods. Further, while reconstructed images have been published, to-date there is no open dataset providing raw multi-coil RT-MRI data from an optimized speech production experimental setup. Such datasets could enable new and improved methods for dynamic image reconstruction, artifact correction, feature extraction, and direct extraction of linguistically-relevant biomarkers. The present dataset offers a unique corpus of 2D sagittal-view RT-MRI videos along with synchronized audio for 75 participants performing linguistically motivated speech tasks, alongside the corresponding public domain raw RT-MRI data. The dataset also includes 3D volumetric vocal tract MRI during sustained speech sounds and high-resolution static anatomical T2-weighted upper airway MRI for each participant.
Quantitative DCE-MRI provides voxel-wise estimates of tracer-kinetic parameters that are valuable in the assessment of health and disease. These maps suffer from many known sources of variability. This variability is expensive to compute using current methods, and is typically not reported. Here, we demonstrate a novel approach for simultaneous estimation of tracer-kinetic parameters and their uncertainty due to intrinsic characteristics of the tracer-kinetic model, with very low computation time. We train and use a neural network to estimate the approximate joint posterior distribution of tracer-kinetic parameters. Uncertainties are estimated for each voxel and are specific to the patient, exam, and lesion. We demonstrate the methods' ability to produce accurate tracer-kinetic maps. We compare predicted parameter ranges with uncertainties introduced by noise and by differences in post-processing in a digital reference object. The predicted parameter ranges correlate well with tracer-kinetic parameter ranges observed across different noise realizations and regression algorithms. We also demonstrate the value of this approach to differentiate significant from insignificant changes in brain tumor pharmacokinetics over time. This is achieved by enforcing consistency in resolving model singularities in the applied tracer-kinetic model.
200-word limit)Purpose: To apply tracer kinetic models as temporal constraints during reconstruction of under-sampled dynamic contrast enhanced (DCE) MRI. Methods:A library of concentration v.s time profiles is simulated for a range of physiological kinetic parameters. The library is reduced to a dictionary of temporal bases, where each profile is approximated by a sparse linear combination of the bases. Image reconstruction is formulated as estimation of concentration profiles and sparse model coefficients with a fixed sparsity level. Simulations are performed to evaluate modeling error, and error statistics in kinetic parameter estimation in presence of noise. Retrospective under-sampling experiments are performed on a brain tumor DCE digital reference object (DRO) at different signal to noise levels (SNR=20-4ID0) at (k-t) space under-sampling factor (R=20), and 12 brain tumor invivo 3T datasets at (R=20-40). The approach is compared against an existing compressed sensing based temporal finite-difference (tFD) reconstruction approach.Results: Simulations demonstrate that sparsity levels of 2 and 3 model the library profiles from the Patlak and extended Tofts-Kety (ETK) models, respectively. Noise sensitivity analysis showed equivalent kinetic parameter estimation error statistics from noisy concentration profiles, and model approximated profiles. DRO based experiments showed good fidelity in recovery of kinetic maps from 20-fold undersampled data at SNRs between 10-30. In-vivo experiments demonstrated reduced bias and uncertainty in kinetic mapping with the proposed approach compared to tFD at R>=20. Conclusions:Tracer kinetic models can be applied as temporal constraints during DCE-MRI reconstruction, enabling more accurate reconstruction from undersampled data. The approach is flexible, can use several kinetic models, and does not require tuning of regularization parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.