In this paper, we present TED-LIUM release 3 corpus 3 dedicated to speech recognition in English, which multiplies the available data to train acoustic models in comparison with TED-LIUM 2, by a factor of more than two. We present the recent development on Automatic Speech Recognition (ASR) systems in comparison with the two previous releases of the TED-LIUM Corpus from 2012 and 2014. We demonstrate that, passing from 207 to 452 hours of transcribed speech training data is really more useful for end-to-end ASR systems than for HMM-based state-of-the-art ones. This is the case even if the HMMbased ASR system still outperforms the end-to-end ASR system when the size of audio training data is 452 hours, with a Word Error Rate (WER) of 6.7% and 13.7%, respectively. Finally, we propose two repartitions of the TED-LIUM release 3 corpus: the legacy repartition that is the same as that existing in release 2, and a new repartition, calibrated and designed to make experiments on speaker adaptation. Similar to the two first releases, TED-LIUM 3 corpus will be freely available for the research community.
Named entity recognition (NER) is among SLU tasks that usually extract semantic information from textual documents. Until now, NER from speech is made through a pipeline process that consists in processing first an automatic speech recognition (ASR) on the audio and then processing a NER on the ASR outputs. Such approach has some disadvantages (error propagation, metric to tune ASR systems sub-optimal in regards to the final task, reduced space search at the ASR output level,...) and it is known that more integrated approaches outperform sequential ones, when they can be applied. In this paper, we present a first study of end-to-end approach that directly extracts named entities from speech, though a unique neural architecture. On a such way, a joint optimization is able for both ASR and NER. Experiments are carried on French data easily accessible, composed of data distributed in several evaluation campaign. Experimental results show that this end-to-end approach provides better results (F-measure=0.69 on test data) than a classical pipeline approach to detect named entity categories (F-measure=0.65).
Dialectal Arabic (DA) is significantly different from the Arabic language taught in schools and used in written communication and formal speech (broadcast news, religion, politics, etc.). There are many existing researches in the field of Arabic language Sentiment Analysis (SA); however, they are generally restricted to Modern Standard Arabic (MSA) or some dialects of economic or political interest. In this paper we focus on SA of the Tunisian dialect. We use Machine Learning techniques to determine the polarity of comments written in Tunisian dialect. First, we evaluate the SA systems performances with models trained using freely available MSA and Multi-dialectal data sets. We then collect and annotate a Tunisian dialect corpus of 17.000 comments from Facebook. This corpus shows a significant improvement compared to the best model trained on other Arabic dialects or MSA data. We believe that this first freely available 12 corpus will be valuable to researchers working in the field of Tunisian Sentiment Analysis and similar areas.
We present an end-to-end approach to extract semantic concepts directly from the speech audio signal. To overcome the lack of data available for this spoken language understanding approach, we investigate the use of a transfer learning strategy based on the principles of curriculum learning. This approach allows us to exploit out-of-domain data that can help to prepare a fully neural architecture. Experiments are carried out on the French MEDIA and PORTMEDIA corpora and show that this end-toend SLU approach reaches the best results ever published on this task. We compare our approach to a classical pipeline approach that uses ASR, POS tagging, lemmatizer, chunker... and other NLP tools that aim to enrich ASR outputs that feed an SLU text to concepts system. Last, we explore the promising capacity of our end-to-end SLU approach to address the problem of domain portability.
This paper addresses the problem of automatic speech recognition (ASR) error detection and their use for improving spoken language understanding (SLU) systems. In this study, the SLU task consists in automatically extracting, from ASR transcriptions, semantic concepts and concept/values pairs in a e.g touristic information system. An approach is proposed for enriching the set of semantic labels with error specific labels and by using a recently proposed neural approach based on word embeddings to compute well calibrated ASR confidence measures. Experimental results are reported showing that it is possible to decrease significantly the Concept/Value Error Rate with a state of the art system, outperforming previously published results performance on the same experimental data. It also shown that combining an SLU approach based on conditional random fields with a neural encoder/decoder attention based architecture, it is possible to effectively identifying confidence islands and uncertain semantic output segments useful for deciding appropriate error handling actions by the dialogue manager strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.