We consider networks for isentropic gas and prove existence of weak solutions for a large class of coupling conditions. First, we construct approximate solutions by a vectorvalued BGK model with a kinetic coupling function. Introducing so-called kinetic invariant domains and using the method of compensated compactness justifies the relaxation towards the isentropic gas equations. We will prove that certain entropy flux inequalities for the kinetic coupling function remain true for the traces of the macroscopic solution. These inequalities define the macroscopic coupling condition. Our techniques are also applicable to networks with arbitrary many junctions which may possibly contain circles. We give several examples for coupling functions and prove corresponding entropy flux inequalities. We prove also new existence results for solid wall boundary conditions and pipelines with discontinuous crosssectional area.2010 Mathematics Subject Classification. 35L65, 76N15, 82C40.
We introduce new coupling conditions for isentropic flow on networks based on an artificial density at the junction. The new coupling conditions can be derived from a kinetic model by imposing a condition on energy dissipation. Existence and uniqueness of solutions to the generalized Riemann and Cauchy problem are proven. The result for the generalized Riemann problem is globally in state space. Furthermore, non-increasing energy at the junction and a maximum principle are proven. A numerical example is given in which the new conditions are the only known conditions leading to the physically correct wave types. The approach generalizes to full gas dynamics.
Fluid flow in pipes with discontinuous cross section or with kinks is described through balance laws with a non conservative product in the source. At jump discontinuities in the pipes' geometry, the physics of the problem suggests how to single out a solution. On this basis, we present a definition of solution for a general BV geometry and prove an existence result, consistent with a limiting procedure from piecewise constant geometries. In the case of a smoothly curved pipe we thus justify the appearance of the curvature in the source term of the linear momentum equation.These results are obtained as consequences of a general existence result devoted to abstract balance laws with non conservative source terms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.