In this preprint, we introduce a dataset containing students enrolment applications combined with the related result of their filing procedure. The dataset contains 73 variable. Student candidates, at the time of applying for study, fill a web form for filing the procedure. A committee at Tilburg University review each single application and decide if the student is admissible or not. This dataset is suitable for algorithmic studies and has been used in a comparison between the Naïve Bayes and the C5.0 Decision Tree Algorithms. They have been used for predicting the decision of the committee in admitting candidates at various bachelor programs. Our analysis shows that, in this particular case, a combination of the approaches outperform a both of them in term of precision and recall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.