Click chemistry is widely used in materials and surface science for its high efficiency, ease of use and high yields. Azide-terminated SAMs have been prepared successfully by using three different deposition methods (postfunctionalization and direct grafting by immersion as well as spin coating). Strikingly, our study shows that the reactivity of the azido group on the surface with the alkyne in solution is not trivial and seems to be closely related to the orientation of the azide. Indeed, more the azide is vertically oriented more it is accessible and reactive. The orientation of azido dipoles at the surface depends strongly on the method used to prepare the monolayer. The post-functionalization method allows to have a homogeneous population of the azide groups on the surface with a better vertical orientation than that obtained using direct grafting by immersion or spin coating processes. Whatever the type of azide-terminated SAMs, the reactivity of the accessible vertical azido groups is complete. This study clearly demonstrates that it is possible to control the amount of reactive azides and, consequently, the amount of molecules immobilized on the surface after the click reaction by choosing the deposition method.
Atherosclerosis is at the onset of the cardiovascular diseases that are among the leading causes of death worldwide. Currently, high-risk plaques, also called vulnerable atheromatous plaques, remain often undiagnosed until the occurrence of severe complications, such as stroke or myocardial infarction. Molecular imaging agents that target high-risk atheromatous lesions could greatly improve the diagnosis of atherosclerosis by identifying sites of high disease activity. Moreover, a “theranostic approach” that combines molecular imaging agents (for diagnosis) and therapeutic molecules would be of great value for the local management of atheromatous plaques. The aim of this study was to develop and characterize an innovative theranostic tool for atherosclerosis. We engineered oil-in-water nano-emulsions (NEs) loaded with superparamagnetic iron oxide (SPIO) nanoparticles for magnetic resonance imaging (MRI) purposes. Dynamic MRI showed that NE-SPIO nanoparticles decorated with a polyethylene glycol (PEG) layer reduced their liver uptake and extended their half-life. Next, the NE-SPIO-PEG formulation was functionalized with a fully human scFv-Fc antibody (P3) recognizing galectin 3, an atherosclerosis biomarker. The P3-functionalized formulation targeted atheromatous plaques, as demonstrated in an immunohistochemistry analyses of mouse aorta and human artery sections and in an Apoe−/− mouse model of atherosclerosis. Moreover, the formulation was loaded with SPIO nanoparticles and/or alpha-tocopherol to be used as a theranostic tool for atherosclerosis imaging (SPIO) and for delivery of drugs that reduce oxidation (here, alpha-tocopherol) in atheromatous plaques. This study paves the way to non-invasive targeted imaging of atherosclerosis and synergistic therapeutic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.