International audienceOn the one hand Cartesian products of graphs have been extensively studied since the 1960s. On the other hand hypergraphs are a well-known and useful generalization of graphs. In this article, we present an algorithm able to factorize into its prime factors any bounded-rank and bounded-degree hypergraph in O(nm), where n is the number of vertices and m is the number of hyperedges of the hypergraph. First the algorithm applies a graph factorization algorithm to the 2-section of the hypergraph. Then the 2-section factorization is used to build the factorization of the hypergraph via the factorization of its L2-section. The L2-section is a recently introduced way to interpret a hypergraph as a labeled-graph. The graph factorization algorithm used in this article is due to Imrich and Peterin and is linear in time and space. Nevertheless any other such algorithm could be extended to a hypergraph factorization algorithm similar to the one presented here
Cartesian products of graphs have been studied extensively since the 1960s. They make it possible to decrease the algorithmic complexity of problems by using the factorization of the product. Hypergraphs were introduced as a generalization of graphs and the definition of Cartesian products extends naturally to them. In this paper, we give new properties and algorithms concerning coloring aspects of Cartesian products of hypergraphs. We also extend a classical prime factorization algorithm initially designed for graphs to connected conformal hypergraphs using 2-sections of hypergraphs.
HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.