Au-catalyzed hydroamination proceeds well for alkynes but not alkenes. We report gas-phase binding energies of alkenes and alkynes to a cationic Au center, which indicate that differences in binding are not the origin of the disparate chemical behavior. We further report the synthesis and characterization of 2-aminoalkylgold complexes, which would be the intermediates in a hypothetical Au-catalyzed hydroamination of styrene. The reactivity of the well-charac-terized and isolable complexes reveals that protonation or alkylation of the 2-aminoalkylgold complexes results in amine elimination in solution, and in the gas phase, indicating that the failure of Au-catalyzed alkene hydroamination derives from a non-competitive protodeauration step. We analyze possible transition states for the protodeauration, and identify an insufficiently strong Au-proton interaction as the reason that the transition states lie too high in energy to compete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.