We point out that the hypothesis of an SU(5)-like supersymmetric Grand Unified Theory (GUT) implies a generic relation within the flavour structure of up-type squarks. Contrary to other well-known SU(5) relations between the down-quark and charged lepton sectors, this relation remains exact in the presence of any corrections and extra operators. Moreover it remains valid to a good precision at the electroweak scale, and opens thus new possibilities for testing SU(5)-like GUTs. We derive the low-energy effective theory of observable light up-type squarks, that also constitutes a useful tool for squark phenomenology. We use this effective theory to determine how to test SU(5) relations at the LHC. Focusing on scenarios with light stops, compatible with Natural SUSY, it appears that simple tests involving ratios of event rates are sufficient to test the hypothesis of an SU(5)-like GUT theory. The techniques of charm-tagging and top-polarimetry are a crucial ingredient of these tests.
We elaborate on a recently found SU (5) relation confined to the up-(s)quark flavour space, that remains immune to large quantum corrections up to the TeV scale. We investigate the possibilities opened by this new window on the GUT scale in order to find TeV-scale SU (5) tests realizable at the LHC. These SU (5) tests appear as relations among observables involving either flavour violation or chirality flip in the up-(s)quark sector. The power of these tests is systematically evaluated using a frequentist, p-value based criterion. SU (5) tests in the Heavy supersymmetry (SUSY), Natural supersymmetry and Top-charm supersymmetry spectra are investigated. The latter scenario features light stops and scharms and is well-motivated from various five-dimensional constructions. A variety of SU (5) tests is obtained, involving techniques of top polarimetry, charm-tagging, or Higgs detection from SUSY cascade decays. We find that O(10) to O(100) events are needed to obtain 50% of relative precision at 3σ significance for all of these tests. In addition, we propose a set of precision measurements in ultraperipheral collisions in order to search for the flavour-changing dipole operators of Heavy supersymmetry.
We elaborate on a recently found SU(5) relation confined to the up-(s)quark flavour space, that remains immune to large quantum corrections up to the TeV scale. We investigate the possibilities opened by this new window on the GUT scale in order to find TeV-scale SU(5) tests realizable at the LHC. These SU(5) tests appear as relations among observables involving either flavour violation or chirality flip in the up-(s)quark sector. The power of these tests is systematically evaluated using a frequentist, p-value based criterion. SU(5) tests in the Heavy supersymmetry (SUSY), Natural supersymmetry and Top-charm supersymmetry spectra are investigated. The latter scenario features light stops and scharms and is well-motivated from various five-dimensional constructions. A variety of SU (5) tests is obtained, involving techniques of top polarimetry, charm-tagging, or Higgs detection from SUSY cascade decays. We find that O(10) to O(100) events are needed to obtain 50% of relative precision at 3σ significance for all of these tests. In addition, we propose a set of precision measurements in ultraperipheral collisions in order to search for the flavour-changing dipole operators of Heavy supersymmetry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.