Summary.We consider an application in electricity grid load prediction, where generalized additive models are appropriate, but where the data set's size can make their use practically intractable with existing methods. We therefore develop practical generalized additive model fitting methods for large data sets in the case in which the smooth terms in the model are represented by using penalized regression splines. The methods use iterative update schemes to obtain factors of the model matrix while requiring only subblocks of the model matrix to be computed at any one time.We show that efficient smoothing parameter estimation can be carried out in a well-justified manner. The grid load prediction problem requires updates of the model fit, as new data become available, and some means for dealing with residual auto-correlation in grid load. Methods are provided for these problems and parallel implementation is covered. The methods allow estimation of generalized additive models for large data sets by using modest computer hardware, and the grid load prediction problem illustrates the utility of reduced rank spline smoothing methods for dealing with complex modelling problems.
We propose a novel framework for fitting additive quantile regression models, which provides well calibrated inference about the conditional quantiles and fast automatic estimation of the smoothing parameters, for model structures as diverse as those usable with distributional GAMs, while maintaining equivalent numerical efficiency and stability. The proposed methods are at once statistically rigorous and computationally efficient, because they are based on the general belief updating framework of Bissiri et al. (2016) to loss based inference, but compute by adapting the stable fitting methods of Wood et al. (2016). We show how the pinball loss is statistically suboptimal relative to a novel smooth generalisation, which also gives access to fast estimation methods. Further, we provide a novel calibration method for efficiently selecting the 'learning rate' balancing the loss with the smoothing priors during inference, thereby obtaining reliable quantile uncertainty estimates. Our work was motivated by a probabilistic electricity load forecasting application, used here to demonstrate the proposed approach. The methods described here are implemented by the qgam R package, available on the Comprehensive R Archive Network (CRAN).
In the last two decades the growth of computational resources has made it possible to handle Generalized Additive Models (GAMs) that formerly were too costly for serious applications. However, the growth in model complexity has not been matched by improved visualisations for model development and results presentation. Motivated by an industrial application in electricity load forecasting, we identify the areas where the lack of modern visualisation tools for GAMs is particularly severe, and we address the shortcomings of existing methods by proposing a set of visual tools that a) are fast enough for interactive use, b) exploit the additive structure of GAMs, c) scale to large data sets and d) can be used in conjunction with a wide range of response distributions. The new visual methods proposed here are implemented by the mgcViz R package, available on the Comprehensive R Archive Network 1 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.