Quantum dots embedded within nanowires represent one of the most promising technologies for applications in quantum photonics. Whereas the top-down fabrication of such structures remains a technological challenge, their bottom-up fabrication through self-assembly is a potentially more powerful strategy. However, present approaches often yield quantum dots with large optical linewidths, making reproducibility of their physical properties difficult. We present a versatile quantum-dot-innanowire system that reproducibly self-assembles in core-shell GaAs/AlGaAs nanowires. The quantum dots form at the apex of a GaAs/AlGaAs interface, are highly stable, and can be positioned with nanometre precision relative to the nanowire centre. Unusually, their emission is blue-shifted relative to the lowest energy continuum states of the GaAs core. Large-scale electronic structure calculations show that the origin of the optical transitions lies in quantum confinement due to Al-rich barriers. By emitting in the red and self-assembling on silicon substrates, these quantum dots could therefore become building blocks for solid-state lighting devices and third-generation solar cells. S emiconductor quantum dots have been shown to be excellent building blocks for quantum photonics applications, such as single-photon sources and nano-sensing. Desirable properties of a single-photon emitter include high-fidelity anti-bunching (very small g 2 (t = 0)), narrow emission lines (ideally transform limited to a few microelectronvolt) and high brightness (>1 MHz count rate on standard detector). For simplicity, these properties should be achieved either with electrical injection or non-resonant optical excitation. Desirable properties of a nano-sensor include a high sensitivity to local electric and magnetic fields, with the quantum dot located as close as possible to the target region. A popular realization involves Stranski-Krastanow InGaAs quantum dots embedded in a three-dimensional matrix, which are excellent building blocks for the realization of practical singlephoton sources 1 . However, the photon extraction out of the bulk semiconductor is highly inefficient on account of the large mismatch in refractive indices of GaAs and vacuum. An attractive way forward is to embed the quantum dots in a nanowire 2 . To solve the extraction problem, the nanowire is designed to operate as a single-mode waveguide, a so-called photonic nanowire, with a taper as photon out-coupler 3 . Also, for nano-sensing applications, a quantum dot in a nanowire can be located much closer to the active medium. Top-down fabrication of the photonic waveguide is technologically complex, however. Bottom-up fabrication of the photonic waveguide is very attractive 4-6 , but it is at present challenging to self-assemble quantum dots in the nanowires with narrow linewidths and high yields 7,8 . Nano-sensing applications are at present not highly developed. Other degrees of freedom of the quantum-dot-in-nanowire system that can be usefully exploited are the mechanical modes ...
We experimentally demonstrate the directional emission of polarized light from single semiconductor nanowires. The directionality of this emission has been directly determined with Fourier microphotoluminescence measurements of vertically oriented InP nanowires. Nanowires behave as efficient optical nanoantennas, with emission characteristics that are not only given by the material but also by their geometry and dimensions. By means of finite element simulations, we show that the radiated power can be enhanced for frequencies and diameters at which leaky modes in the structure are present. These leaky modes can be associated to Mie resonances in the cylindrical structure. The radiated power can be also inhibited at other frequencies or when the coupling of the emission to the resonances is not favored. We anticipate the relevance of these results for the development of nanowire photon sources with optimized efficiency and/or controlled emission by the geometry.
We show that optically active quantum dots (QDs) embedded in MBE-grown GaAs/AlGaAs core-shell nanowires (NWs) are coupled to the NW mechanical motion. Oscillations of the NW modulate the QD emission energy in a broad range exceeding 14 meV. Furthermore, this opto-mechanical interaction enables the dynamical tuning of two neighboring QDs into resonance, possibly allowing for emitter-emitter coupling. Both the QDs and the coupling mechanism, i.e. material strain, are intrinsic to the NW structure and do not depend on any functionalization or external field. Such systems open up the prospect of using QDs to probe and control the mechanical state of a NW, or conversely of making a quantum nondemolition readout of a QD state through a position measurement.
Carbon nanostructures that feature two-dimensional extended nanosheets are important components for technological applications such as high-performance composites, lithium-ion storage, photovoltaics and nanoelectronics. Chemical functionalization would render such structures better processable and more suited for tailored applications, but typically this is precluded by the high temperatures needed to prepare the nanosheets. Here, we report direct access to functional carbon nanosheets of uniform thickness at room temperature. We used amphiphiles that contain hexayne segments as metastable carbon precursors and self-assembled these into ordered monolayers at the air/water interface. Subsequent carbonization by ultraviolet irradiation in ambient conditions resulted in the quantitative carbonization of the hexayne sublayer. Carbon nanosheets prepared in this way retained their surface functionalization and featured an sp(2)-rich amorphous carbon structure comparable to that usually obtained on annealing above 800 °C. Moreover, they exhibited a molecularly defined thickness of 1.9 nm, were mechanically self-supporting over several micrometres and had macroscopic lateral dimensions on the order of centimetres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.