The problem of antibiotic resistance has become a challenge for our public health and society; it has allowed infectious diseases to re-emerge as a risk to human health. New antibiotics that are introduced to the market face the rise of resistant pathogens after a certain period of use. The relatively fast development of resistance against some antibiotics seems to be closely linked to their microbial origin and function in nature. Antibiotics in clinical use are merely products of microorganisms or derivatives of microbial products. The evolution of these antimicrobial compounds has progressed with the evolution of the respective resistance mechanisms in microbes for billions of years. Thus, antimicrobial resistance genes are present within the environment and can be taken up by pathogens through horizontal gene transfer. Natural products from bacteria are an important source of leads for drug development, and microbial natural products have contributed the most antibiotics in current clinical use. Bioprospecting for new antibiotics is a labor-intensive task as obstacles such as redetection of known compounds and low compound yields consume significant resources. The number of bacterial isolates one can theoretically investigate for new secondary metabolites is, on the other hand, immense. Therefore, the available capacity for biodiscovery should be focused on the most promising sources for chemical novelty and bioactivity, employing the appropriate scientific tools. This can be done by first looking into under- or unexplored environments for bacterial isolates and by focusing on the promising candidates to reduce the number of subjects.
Siderophores are compounds with high affinity for ferric iron. Bacteria produce these compounds to acquire iron in iron-limiting conditions. Iron is one of the most abundant metals on earth, and its presence is necessary for many vital life processes. Bacteria from the genus Serratia contribute to the iron respiration in their environments, and previously several siderophores have been isolated from this genus. As part of our ongoing search for medicinally relevant compounds produced by marine microbes, a co-culture of a Shewanella sp. isolate and a Serratia sp. isolate, grown in iron-limited conditions, was investigated, and the rare siderophore serratiochelin A (1) was isolated with high yields. Compound 1 has previously been isolated exclusively from Serratia sp., and to our knowledge, there is no bioactivity data available for this siderophore to date. During the isolation process, we observed the degradation product serratiochelin C (2) after exposure to formic acid. Both 1 and 2 were verified by 1-D and 2-D NMR and high-resolution MS/MS. Here, we present the isolation of 1 from an iron-depleted co-culture of Shewanella sp. and Serratia sp., its proposed mechanism of degradation into 2, and the chemical and biological characterization of both compounds. The effects of 1 and 2 on eukaryotic and prokaryotic cells were evaluated, as well as their effect on biofilm formation by Staphylococcus epidermidis. While 2 did not show bioactivity in the given assays, 1 inhibited the growth of the eukaryotic cells and Staphylococcus aureus.
Two bacterial isolates from the Barents Sea, both belonging to the genus Algibacter, were found to yield extracts with anti-bacterial bioactivity. Mass spectrometry guided dereplication and purification of the active extracts lead to the isolation of the same active principle in both extracts. The structure of the bioactive compound was identified via mass spectrometry and nuclear resonance spectroscopy and it turned out to be the known lipopeptide Lipid 430. We discovered and determined its previously unknown anti-bacterial activity against Streptococcus agalactiae and revealed a cytotoxic effect against the A2058 human melanoma cell line at significantly lower concentrations compared to its anti-bacterial concentration. Flow cytometry and microscopy investigations of the cytotoxicity against the melanoma cell line indicated that Lipid 430 did not cause immediate cell lysis. The experiments with melanoma cells suggest that the compound functions trough more complex pathways than acting as a simple detergent.
A key step in the process of isolating microbial natural products is the preparation of an extract from a culture. This step determines which molecules will be available for detection in the subsequent chemical and biological analysis of a biodiscovery pipeline. In the present study we wanted to document potential differences in performance between liquid–liquid extraction using ethyl acetate and liquid–solid extraction using a poly-benzyl-resin. For the comparison of the two extraction protocols, we spiked a culture of Flavobacterium sp. with a diverse selection of natural products of microbial and plant origin to investigate whether the methods were comparable with respect to selectivity. We also investigated the efficiency of the two extraction methods quantitatively, using water spiked with a selection of natural products, and studied the quantitative effect of different pH levels of the aqueous solutions on the extraction yields of the two methods. The same compounds were extracted by the two methods, but the solid-phase extract contained more media components compared with the liquid-phase extract. Quantitatively, the two extraction methods varied in their recovery rates. We conclude that practical aspects could be more important when selecting one of the extraction protocols, as their efficiencies in extracting specific compounds were quite similar.
The suomilide and the banyasides are highly modified and functionalized non-ribosomal peptides produced by cyanobacteria of the order Nostocales. These compound classes share several substructures, including a complex azabicyclononane core, which was previously assumed to be derived from the amino acid tyrosine. In our study we were able to isolate and determine the structures of four suomilides, named suomilide B – E (1–4). The compounds differ from the previously isolated suomilide A by the functionalization of the glycosyl group. Compounds 1–4 were assayed for anti-proliferative, anti-biofilm and anti-bacterial activities, but no significant activity was detected. The sequenced genome of the producer organism Nostoc sp. KVJ20 enabled us to propose a biosynthetic gene cluster for suomilides. Our findings indicated that the azabicyclononane core of the suomilides is derived from prephenate and is most likely incorporated by a proline specific non-ribosomal peptide synthetase-unit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.