Defensive system activation promotes heightened perception of threat signals, and excessive attention to threat signals has been discussed as a contributory factor in the etiology of anxiety disorders. However, a mechanistic account of attentional modulation during fear-relevant processes, especially during fear generalization remains elusive. To test the hypothesis that social fear generalization prompts sharpened tuning in the visuocortical representation of social threat cues, 67 healthy participants underwent differential fear conditioning, followed by a generalization test in which participants viewed faces varying in similarity with the threat-associated face. We found that generalization of social threat sharpens visuocortical tuning of social threat cues, whereas ratings of fearfulness showed generalization, linearly decreasing with decreasing similarity to the threat-associated face. Moreover, individuals who reported greater anxiety in social situations also showed heightened sharpened tuning of visuocortical neurons to facial identity cues, indicating the behavioral relevance of visuocortical tuning during generalization learning.
Previous research indicates that anxiety disorders are characterized by an overgeneralization of conditioned fear as compared with healthy participants. Therefore, fear generalization is considered a key mechanism for the development of anxiety disorders. However, systematic investigations on the variance in fear generalization are lacking. Therefore, the current study aims at identifying distinctive phenotypes of fear generalization among healthy participants. To this end, 1175 participants completed a differential fear conditioning phase followed by a generalization test. To identify patterns of fear generalization, we used a k-means clustering algorithm based on individual arousal generalization gradients. Subsequently, we examined the reliability and validity of the clusters and phenotypical differences between subgroups on the basis of psychometric data and markers of fear expression. Cluster analysis reliably revealed five clusters that systematically differed in mean responses, differentiation between conditioned threat and safety, and linearity of the generalization gradients, though mean response levels accounted for most variance. Remarkably, the patterns of mean responses were already evident during fear acquisition and corresponded most closely to psychometric measures of anxiety traits. The identified clusters reliably described subgroups of healthy individuals with distinct response characteristics in a fear generalization test. Following a dimensional view of psychopathology, these clusters likely delineate risk factors for anxiety disorders. As crucial group characteristics were already evident during fear acquisition, our results emphasize the importance of average fear responses and differentiation between conditioned threat and safety as risk factors for anxiety disorders.
Sensory processing and attention allocation are shaped by threat, but the role of trait-anxiety in sensory processing as a function of threat predictability remains incompletely understood. Therefore, we measured steady-state visual evoked potentials (ssVEPs) as an index of sensory processing of predictable and unpredictable threat cues in 29 low (LA) and 29 high (HA) trait-anxious participants during a modified NPU-paradigm followed by an extinction phase. Three different contextual cues indicated safety (N), predictable (P) or unpredictable threat (U), while foreground cues signalled shocks in the P-condition only. All participants allocated increased attentional resources to the central P-threat cue, replicating previous findings. Importantly, LA individuals exhibited larger ssVEP amplitudes to contextual threat (U and P) than to contextual safety cues, while HA individuals did not differentiate among contextual cues in general. Further, HA exhibited higher aversive ratings of all contexts compared to LA. These results suggest that high trait-anxious individuals might be worse at discriminating contextual threat stimuli and accordingly overestimate the probability and aversiveness of unpredictable threat. These findings support the notion of aberrant sensory processing of unpredictable threat in anxiety disorders, as this processing pattern is already evident in individuals at risk of these disorders.
Defensive system activation promotes heightened perception of threat signals, and excessive attention to threat signals has been discussed as a contributory factor in the etiology of anxiety disorders. However, a mechanistic account of attentional modulation during fear-relevant processes, especially during fear generalization remains elusive. To test the hypothesis that social fear generalization prompts sharpened tuning in the visuocortical representation of social threat cues, 67 healthy participants underwent differential fear conditioning, followed by a generalization test in which participants viewed faces varying in similarity with the threat-associated face. We found that generalization of social threat sharpens visuocortical tuning of social threat cues, whereas ratings of fearfulness showed generalization, linearly decreasing with decreasing similarity to the threat-associated face. Moreover, individuals who reported greater anxiety in social situations also showed heightened sharpened tuning of visuocortical neurons to facial identity cues, suggesting that anxiety may improve the visual system’s discrimination of threatening social stimuli.
Threat detection plays a vital role in adapting behavior to changing environments. A fundamental function to improve threat detection is learning to differentiate between stimuli predicting danger and safety. Accordingly, aversive learning should lead to enhanced sensory discrimination of danger and safety cues. However, studies investigating the psychophysics of visual and auditory perception after aversive learning show divergent findings, and both enhanced and impaired discrimination after aversive learning have been reported. Therefore, the aim of this web-based study is to examine the impact of aversive learning on a continuous measure of visual discrimination. To this end, 205 participants underwent a differential fear conditioning paradigm before and after completing a visual discrimination task using differently oriented grating stimuli. Participants saw either unpleasant or neutral pictures as unconditioned stimuli (US). Results demonstrated sharpened visual discrimination for the US-associated stimulus (CS+), but not for the unpaired conditioned stimuli (CS−). Importantly, this finding was irrespective of the US’s valence. These findings suggest that associative learning results in increased stimulus salience, which facilitates perceptual discrimination in order to prioritize attentional deployment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.