Removing pixel-wise heterogeneous motion blur is challenging due to the ill-posed nature of the problem. The predominant solution is to estimate the blur kernel by adding a prior, but the extensive literature on the subject indicates the difficulty in identifying a prior which is suitably informative, and general. Rather than imposing a prior based on theory, we propose instead to learn one from the data. Learning a prior over the latent image would require modeling all possible image content. The critical observation underpinning our approach is thus that learning the motion flow instead allows the model to focus on the cause of the blur, irrespective of the image content. This is a much easier learning task, but it also avoids the iterative process through which latent image priors are typically applied. Our approach directly estimates the motion flow from the blurred image through a fully-convolutional deep neural network (FCN) and recovers the unblurred image from the estimated motion flow. Our FCN is the first universal end-to-end mapping from the blurred image to the dense motion flow. To train the FCN, we simulate motion flows to generate synthetic blurred-image-motion-flow pairs thus avoiding the need for human labeling. Extensive experiments on challenging realistic blurred images demonstrate that the proposed method outperforms the state-of-the-art.
Ghosting artifacts caused by moving objects or misalignments is a key challenge in high dynamic range (HDR) imaging for dynamic scenes. Previous methods first register the input low dynamic range (LDR) images using optical flow before merging them, which are error-prone and cause ghosts in results. A very recent work tries to bypass optical flows via a deep network with skip-connections, however, which still suffers from ghosting artifacts for severe movement. To avoid the ghosting from the source, we propose a novel attention-guided end-to-end deep neural network (AHDRNet) to produce high-quality ghost-free HDR images. Unlike previous methods directly stacking the LDR images or features for merging, we use attention modules to guide the merging according to the reference image. The attention modules automatically suppress undesired components caused by misalignments and saturation and enhance desirable fine details in the non-reference images. In addition to the attention model, we use dilated residual dense block (DRDB) to make full use of the hierarchical features and increase the receptive field for hallucinating the missing details. The proposed AHDRNet is a non-flowbased method, which can also avoid the artifacts generated by optical-flow estimation error. Experiments on different datasets show that the proposed AHDRNet can achieve state-of-the-art quantitative and qualitative results.
Methylammonium lead iodide perovskite, CH3NH3PbI3, has attracted particular attention because of its fast increase in efficiency as solid-state solar cells. We performed first-principles calculations with the nonlocal van der Waals (vdW) correlation to investigate the crystal structures and electronic and optical properties of CH3NH3PbI3. The calculated results show that the distribution of methylammonium ions, which further changes the vdW interaction and hydrogen bonds of organic and inorganic matrixes, plays a vital role in both the geometry stability and the electronic structure. The vdW correlation is critical to provide appropriate descriptions of the interaction between the organic and the inorganic parts. The phase transformation from orthorhombic to tetragonal phase causes the decrease of the band gap and the red shift of the optical absorption coefficient.
As fuzzy c-means clustering (FCM) algorithm is sensitive to noise, local spatial information is often introduced to an objective function to improve the robustness of the FCM algorithm for image segmentation. However, the introduction of local spatial information often leads to a high computational complexity, arising out of an iterative calculation of the distance between pixels within local spatial neighbors and clustering centers. To address this issue, an improved FCM algorithm based on morphological reconstruction and membership filtering (FRFCM) that is significantly faster and more robust than FCM is proposed in this paper. First, the local spatial information of images is incorporated into FRFCM by introducing morphological reconstruction operation to guarantee noise-immunity and image detail-preservation. Second, the modification of membership partition, based on the distance between pixels within local spatial neighbors and clustering centers, is replaced by local membership filtering that depends only on the spatial neighbors of membership partition. Compared with stateof-the-art algorithms, the proposed FRFCM algorithm is simpler and significantly faster, since it is unnecessary to compute the distance between pixels within local spatial neighbors and clustering centers. In addition, it is efficient for noisy image segmentation because membership filtering are able to improve membership partition matrix efficiently. Experiments performed on synthetic and real-world images demonstrate that the proposed algorithm
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.