Tumor necrosis factor receptor-associated factor 6 (TRAF6), a unique E3 ubiquitin ligase and adaptor protein, is involved in activation of various signaling cascades. Recent studies identify TRAF6 as one of the novel regulators of skeletal muscle atrophy. The role of TRAF6 in glucocorticoid-induced muscle atrophy, however, remains to be elucidated. In this study, we show that TRAF6 and its downstream signaling molecules, muscle atrophy F-box (MAFBx) and muscle ring finger 1 (MuRF1), were all upregulated in dexamethasone-induced atrophy of mouse C2C12 myotubes or mouse tibialis anterior (TA) muscle. To further investigate the role of TRAF6 in dexamethasone-induced muscle atrophy, TRAF6-siRNA was used to transfect cultured C2C12 myotubes or was injected into the TA muscle of mice respectively, and we note that TRAF6 knockdown attenuated dexamethasone-induced muscle atrophy in vitro and in vivo, and concomitantly decreased the expression of MuRF1 and MAFBx. Our findings suggest that a decreased expression of TRAF6 could rescue dexamethasone-induced skeletal muscle atrophy through, at least in part, regulation of the expression of MAFBx and MuRF1.
Chitooligosaccharides (COSs) are the biodegradation products of chitosan that have been demonstrated with neuroaffinity and/or neuroprotective actions. In this study, we investigated the possible benefits of treatment with COSs on nerve regeneration after crush injuries to peripheral nerves. The rabbits with the crushed common peroneal nerve were treated by daily intravenous injection of 1.5 or 3 mg/kg body weight of COSs or identical volume of saline (as the control) for a 6-week period. At the end of COSs treatment, electrophysiological assessments, Meyer's trichrome and Masson trichrome staining, and transmission electron microscopy were used to evaluate the regeneration of injured common peroneal nerve and atrophy of the tibialis posterior muscle. The results showed that the compound muscle action potentials, the number of regenerated myelinated nerve fibers, the thickness of regenerated myelin sheaths, and the cross-sectional area of tibialis posterior muscle fibers were significantly improved in the nerves that received COSs treatment and the results with COSs treatment displayed a dose-dependent pattern. This study demonstrated that COSs accelerated peripheral nerve regeneration after crush injury to rabbit common peroneal nerves. The COSs could probably become a potential neuroprotective agent for improvement of peripheral nerve regeneration after the injury and deserve for further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.