GaN is an excellent material choice for power devices due to its excellent properties such as super wide bandgap width and high electron mobility. However, the problem of temperature affects the thermo reliability and hinders the potential of GaN devices. In this paper, the electrical properties of GaN under temperature have been studied by the combination of numerical simulation and experimental research. The electric current change and electrical resistivity of polarized and depolarized GaN semiconductor samples were tested in an environment-test cabinet. Based on the influence of temperature, the expression of the resistivity curve vs temperature was established for polarized and depolarized GaN samples. It is shown that the resistivity model predictions are consistent with experimental results. The I–V characteristic curves under different temperatures were also measured. Thus, such a model is instructive to the reliable design of GaN high-temperature devices. The findings will be instructive to the optimal design of GaN electronic components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.