A unified coarse-grained model of three major classes of biological molecules—proteins, nucleic acids, and polysaccharides—has been developed. It is based on the observations that the repeated units of biopolymers (peptide groups, nucleic acid bases, sugar rings) are highly polar and their charge distributions can be represented crudely as point multipoles. The model is an extension of the united residue (UNRES) coarse-grained model of proteins developed previously in our laboratory. The respective force fields are defined as the potentials of mean force of biomacromolecules immersed in water, where all degrees of freedom not considered in the model have been averaged out. Reducing the representation to one center per polar interaction site leads to the representation of average site–site interactions as mean-field dipole–dipole interactions. Further expansion of the potentials of mean force of biopolymer chains into Kubo’s cluster-cumulant series leads to the appearance of mean-field dipole–dipole interactions, averaged in the context of local interactions within a biopolymer unit. These mean-field interactions account for the formation of regular structures encountered in biomacromolecules, e.g., α-helices and β-sheets in proteins, double helices in nucleic acids, and helicoidally packed structures in polysaccharides, which enables us to use a greatly reduced number of interacting sites without sacrificing the ability to reproduce the correct architecture. This reduction results in an extension of the simulation timescale by more than four orders of magnitude compared to the all-atom representation. Examples of the performance of the model are presented.FigureComponents of the Unified Coarse Grained Model (UCGM) of biological macromolecules
Summary: Participating as the Cornell-Gdansk group, we have used our physics-based coarsegrained UNited RESidue (UNRES) force field to predict protein structure in the 11th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP11). Our methodology involved extensive multiplexed replica exchange simulations of the target proteins with a recently improved UNRES force field to provide better reproductions of the local structures of polypeptide chains. All simulations were started from fully extended polypeptide chains, and no external information was included in the simulation process except for weak restraints on secondary structure to enable us to finish each prediction within the allowed 3-week time window. Because of simplified UNRES representation of polypeptide chains, use of enhanced sampling methods, code optimization and parallelization and sufficient computational resources, we were able to treat, for the first time, all 55 human prediction targets with sizes from 44 to 595 amino acid residues, the average size being 251 residues. Complete structures of six singledomain proteins were predicted accurately, with the highest accuracy being attained for the T0769, for which the CaRMSD was 3.8 Å for 97 residues of the experimental structure. Correct structures were also predicted for 13 domains of multi-domain proteins with accuracy comparable to that of the best template-based modeling methods. With further improvements of the UNRES force field that are now underway, our physics-based coarse-grained approach to protein-structure prediction will eventually reach global prediction capacity and, consequently, reliability in simulating protein structure and dynamics that are important in biochemical processes. Availability and Implementation: Freely available on the web at
Physics-based potentials have been developed for the interactions between proteins and DNA for simulations with the UNRES+NARES-2P force field. The mean-field interactions between a protein and a DNA molecule can be divided into eight categories: (1) nonpolar side chain-DNA base, (2) polar uncharged side chain-DNA base, (3) charged side chain-DNA base, (4) peptide group-phosphate group, (5) peptide group-DNA base, (6) nonpolar side chain-phosphate group, (7) polar uncharged side chain-phosphate group, and (8) charged side chain-phosphate group. Umbrella-sampling molecular dynamics simulations in explicit TIP3P water using the AMBER force field were carried out to determine the potentials of mean force (PMF) for all 105 pairs of interacting components. Approximate analytical expressions for the mean-field interaction energy of each pair of kinds of interacting molecules were then fitted to the PMFs to obtain the parameters of the analytical expressions. These analytical expressions can reproduce satisfactorily the PMF curves corresponding to different orientations of the interacting molecules. The results suggest that the physics-based mean-field potentials of amino acid-nucleotide interactions presented here can be used in coarse-grained simulation of protein-DNA interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.