Forest above-ground biomass (AGB) can be estimated based on light detection and ranging (LiDAR) point clouds. This paper introduces an accurate and detailed quantitative structure model (AdQSM), which can estimate the AGB of large tropical trees. AdQSM is based on the reconstruction of 3D tree models from terrestrial laser scanning (TLS) point clouds. It represents a tree as a set of closed and complete convex polyhedra. We use AdQSM to model 29 trees of various species (total 18 species) scanned by TLS from three study sites (the dense tropical forests of Peru, Indonesia, and Guyana). The destructively sampled tree geometry measurement data is used as reference values to evaluate the accuracy of diameter at breast height (DBH), tree height, tree volume, branch volume, and AGB estimated from AdQSM. After AdQSM reconstructs the structure and volume of each tree, AGB is derived by combining the wood density of the specific tree species from destructive sampling. The AGB estimation from AdQSM and the post-harvest reference measurement data show a satisfying agreement. The coefficient of variation of root mean square error (CV-RMSE) and the concordance correlation coefficient (CCC) are 20.37% and 0.97, respectively. AdQSM provides accurate tree volume estimation, regardless of the characteristics of the tree structure, without major systematic deviations. We compared the accuracy of AdQSM and TreeQSM in modeling the volume of 29 trees. The tree volume from AdQSM is compared with the reference value, and the determination coefficient (R2), relative bias (rBias), and CV-RMSE of tree volume are 0.96, 6.98%, and 22.62%, respectively. The tree volume from TreeQSM is compared with the reference value, and the R2, relative Bias (rBias), and CV-RMSE of tree volume are 0.94, −9.69%, and 23.20%, respectively. The CCCs between the volume estimates based on AdQSM, TreeQSM, and the reference values are 0.97 and 0.96. AdQSM also models the branches in detail. The volume of branches from AdQSM is compared with the destructive measurement reference data. The R2, rBias, and CV-RMSE of the branches volume are 0.97, 12.38%, and 36.86%, respectively. The DBH and height of the harvested trees were used as reference values to test the accuracy of AdQSM’s estimation of DBH and tree height. The R2, rBias, and CV-RMSE of DBH are 0.94, −5.01%, and 9.06%, respectively. The R2, rBias, and CV-RMSE of the tree height were 0.95, 1.88%, and 5.79%, respectively. This paper provides not only a new QSM method for estimating AGB based on TLS point clouds but also the potential for further development and testing of allometric equations.
Tree-level information can be estimated based on light detection and ranging (LiDAR) point clouds. We propose to develop a quantitative structural model based on terrestrial laser scanning (TLS) point clouds to automatically and accurately estimate tree attributes and to detect real trees for the first time. This model is suitable for forest research where branches are involved in the calculation. First, the Adtree method was used to approximate the geometry of the tree stem and branches by fitting a series of cylinders. Trees were represented as a broad set of cylinders. Then, the end of the stem or all branches were closed. The tree model changed from a cylinder to a closed convex hull polyhedron, which was to reconstruct a 3D model of the tree. Finally, to extract effective tree attributes from the reconstructed 3D model, a convex hull polyhedron calculation method based on the tree model was defined. This calculation method can be used to extract wood (including tree stem and branches) volume, diameter at breast height (DBH) and tree height. To verify the accuracy of tree attributes extracted from the model, the tree models of 153 Chinese scholartrees from TLS data were reconstructed and the tree volume, DBH and tree height were extracted from the model. The experimental results show that the DBH and tree height extracted based on this model are in better consistency with the reference value based on field survey data. The bias, RMSE and R2 of DBH were 0.38 cm, 1.28 cm and 0.92, respectively. The bias, RMSE and R2 of tree height were −0.76 m, 1.21 m and 0.93, respectively. The tree volume extracted from the model is in better consistency with the reference value. The bias, root mean square error (RMSE) and determination coefficient (R2) of tree volume were −0.01236 m3, 0.03498 m3 and 0.96, respectively. This study provides a new model for nondestructive estimation of tree volume, above-ground biomass (AGB) or carbon stock based on LiDAR data.
The recognition and classification of rock lithology is an extremely important task of geological surveys. This paper proposes a new method for quickly identifying multiple types of rocks suitable for geological survey work field. Based on the two lightweight convolutional neural networks (CNNs), SqueezeNet and MobileNets, and combined with the transfer learning method, a rock lithology recognition model was established. The model was embedded into a smart phone for testing. This method was used to identify and classify the images of 28 kinds of rocks. Through a comprehensive comparison of the two models, the accuracy of SqueezeNet and MobileNets in the test dataset is 94.55% and 93.27%, respectively. Via the two models, the average recognition time of a single rock image is 557 and 836 milliseconds, and rock images with a recognition accuracy of over 96% accounted for 95% and 93% of the entire test dataset. Compared with the classification method based on rock thin section images, this method does not need to make rock thin sections. This paper meets the requirements of workers to quickly and accurately identify rocks in the work field, which improves the work efficiency and limits identification costs. INDEX TERMS Geological survey, lightweight convolutional neural networks, multiple types, rock recognition.
Objective: India and Europe have large populations, a large number of Coronavirus disease 2019 (COVID-19) cases, and different healthcare systems. This study aims to investigate the differences between the hesitancy toward and preference for COVID-19 vaccines in India and four European countries, namely, the United Kingdom (UK), Germany, Italy, and Spain. Methodology: We conducted a cross-national survey for distribution in India, the UK, Germany, Italy, and Spain. More specifically, a discrete choice experiment (DCE) was conducted to evaluate vaccine preferences, and Likert scales were used to probe the underlying factors that contribute to vaccination acceptance. Propensity score matching (PSM) was performed to directly compare India and European countries. Results: A total of 2565 respondents (835 from India and 1730 from the specified countries in Europe) participated in the survey. After PSM, more than 82.5% of respondents from India positively accepted the COVID-19 vaccination, whereas 79.9% of respondents from Europe had a positive attitude; however, the proportion in Europe changed to 81.6% in cases in which the vaccine was recommended by friends, family, or employers. The DCE found that the COVID-19 vaccine efficacy was the most important factor for respondents in India and the four European nations (41.8% in India and 47.77% in Europe), followed by the vaccine cost (28.06% in India and 25.88% in Europe). Conclusion: Although most respondents in both regions showed high acceptance of COVID-19 vaccines, either due to general acceptance or acceptance as a result of social cues, the vaccination coverage rate shows apparent distinctions. Due to the differences in COVID-19 situations, public health systems, cultural backgrounds, and vaccine availability, the strategies for COVID-19 vaccine promotion should be nation-dependent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.