Retrograde intrarenal surgery (RIRS) is a minimally invasive endoscopic procedure for the treatment of kidney stones. Traditionally, RIRS is usually performed by reconstructing a 3D model of the kidney from preoperative CT images in order to locate the kidney stones; then, the surgeon finds and removes the stones with experience in endoscopic video. However, due to the many branches within the kidney, it can be difficult to relocate each lesion and to ensure that all branches are searched, which may result in the misdiagnosis of some kidney stones. To avoid this situation, we propose a convolutional neural network (CNN)-based method for matching preoperative CT images and intraoperative videos for the navigation of ureteroscopic procedures. First, a pair of synthetic images and depth maps reflecting preoperative information are obtained from a 3D model of the kidney. Then, a style transfer network is introduced to transfer the ureteroscopic images to the synthetic images, which can generate the associated depth maps. Finally, the fusion and matching of depth maps of preoperative images and intraoperative video images are realized based on semantic features. Compared with the traditional CT-video matching method, our method achieved a five times improvement in time performance and a 26% improvement in the top 10 accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.