In IaaS (infrastructure as a service) cloud environment, users are provisioned with virtual machines (VMs). To allocate resources for users dynamically and effectively, accurate resource demands predicting is essential. For this purpose, this paper proposes a self-adaptive prediction method using ensemble model and subtractive-fuzzy clustering based fuzzy neural network (ESFCFNN). We analyze the characters of user preferences and demands. Then the architecture of the prediction model is constructed. We adopt some base predictors to compose the ensemble model. Then the structure and learning algorithm of fuzzy neural network is researched. To obtain the number of fuzzy rules and the initial value of the premise and consequent parameters, this paper proposes the fuzzy c-means combined with subtractive clustering algorithm, that is, the subtractive-fuzzy clustering. Finally, we adopt different criteria to evaluate the proposed method. The experiment results show that the method is accurate and effective in predicting the resource demands.
The resources in cloud environment have features such as large-scale, diversity, and heterogeneity. Moreover, the user requirements for cloud computing resources are commonly characterized by uncertainty and imprecision. Hereby, to improve the quality of cloud computing service, not merely should the traditional standards such as cost and bandwidth be satisfied, but also particular emphasis should be laid on some extended standards such as system friendliness. This paper proposes a dynamic resource scheduling method based on fuzzy control theory. Firstly, the resource requirements prediction model is established. Then the relationships between resource availability and the resource requirements are concluded. Afterwards fuzzy control theory is adopted to realize a friendly match between user needs and resources availability. Results show that this approach improves the resources scheduling efficiency and the quality of service (QoS) of cloud computing.
As an emerging simulation technology in the field of system modeling and simulation, the equipment symbiotic simulation has become research emphasis. In the field of equipment maintenance support, the outstanding problem of equipment remaining useful life (RUL) prediction is analyzed, i.e., the stable model parameters without self-evolution ability, which has become the primary factor that hinders self-adaptive prediction of equipment RUL. Combined with parallel systems theory, the equipment RUL prediction oriented symbiotic simulation framework is proposed on the basis of modeling analysis and Wiener state space model (SSM) is taken as the basic simulation model in the framework. Driven by the dynamic injected equipment degradation observation data, the model parameters are updated online by using expectation maximum (EM) algorithm and the data assimilation between simulation outputs and observation data is executed by using Kalman filter, so as to realize dynamic evolution of the simulation model. The simulation model evolution which makes the simulation outputs close to equipment real degradation state provides high fidelity model and data for predicting equipment RUL accurately. The framework is verified by the performance degradation data of a bearing. The simulation results show that the symbiotic simulation method can accurately simulate the equipment performance degradation process and the self-adaptive prediction of equipment RUL is realized on the basis of improving prediction accuracy, proving the feasibility and effectiveness of symbiotic simulation method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.