Hydrogenated Nitrile Rubber (HNBR) is widely used in aerospace, petroleum exploration and other fields because of its excellent performances. However, there remains a challenge of balancing the oil resistance and the low temperature resistance for HNBR. In this work, a series of grafted carboxyl nitrile rubber (XNBR) was prepared by the esterification reaction between active functional groups (–COOH) of XNBR and alkanols of different molecular chain lengths (C8H17OH, C12H25OH, C16H33OH, C18H37OH) or Methoxypolyethylene glycols (MPEG) of different molecular weights (Mn = 350, 750, 1000). The structure and low temperature resistance of as-obtained grafted polymers were characterized by Fourier Transform Infrared (FTIR), 1H-NMR and Differential scanning calorimetry (DSC). It was found that the glass transition temperatures (Tg) of grafted XNBR were significantly decreased. MPEG grafted polymers with better low temperature resistance were then selected for hydrogenation. As-prepared hydrogenated XNBR grafted with MPEG-1000 (HXNBR-g-1000) showed the lowest Tg of −29.8 °C and the best low temperature resistance. This work provides a novel and simple preparation method for low temperature resistant HNBR, which might be used potentially in extremely cold environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.