In this paper, we are concerned with the fractional order equations (1) with Hartree typeḢ α 2-critical nonlinearity and its equivalent integral equations (3). We first prove a regularity result which indicates that weak solutions are smooth (Theorem 1.2). Then, by applying the method of moving planes in integral forms, we prove that positive solutions u to (1) and (3) are radially symmetric about some point x 0 ∈ R d and derive the explicit forms for u (Theorem 1.3 and Corollary 1). As a consequence, we also derive the best constants and extremal functions in the corresponding Hardy-Littlewood-Sobolev inequalities (Corollary 2).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.