Significance
A unique avian-origin H7N9 influenza virus caused 134 human infections with 44 deaths. The host factors contributing to moderate vs. severe disease are not clear. Here, we show that H7N9 severity was associated with a higher level of cytokines/chemokines. We demonstrate that the cytokines in the infected lung were 100- to 1,000-fold higher than those in the plasma. Furthermore, we found that the IFN-induced transmembrane protein-3 (IFITM3) C/C genotype was associated with severe clinical outcome, as reflected by reduced time in seeking medical aid; more rapid progression to acute respiratory distress syndrome; and higher viral load, cytokine/chemokine levels, and mortality rate. Overall, our data suggest that the IFITM3 genotype is a primary driver of the observed differences in clinical outcome after H7N9 infection.
The avian origin A/H7N9 influenza virus causes high admission rates (>99%) and mortality (>30%), with ultimately favourable outcomes ranging from rapid recovery to prolonged hospitalization. Using a multicolour assay for monitoring adaptive and innate immunity, here we dissect the kinetic emergence of different effector mechanisms across the spectrum of H7N9 disease and recovery. We find that a diversity of response mechanisms contribute to resolution and survival. Patients discharged within 2–3 weeks have early prominent H7N9-specific CD8+ T-cell responses, while individuals with prolonged hospital stays have late recruitment of CD8+/CD4+ T cells and antibodies simultaneously (recovery by week 4), augmented even later by prominent NK cell responses (recovery >30 days). In contrast, those who succumbed have minimal influenza-specific immunity and little evidence of T-cell activation. Our study illustrates the importance of robust CD8+ T-cell memory for protection against severe influenza disease caused by newly emerging influenza A viruses.
Severe influenza A virus (IAV) infection is associated with immune dysfunction. Here, we show circulating CD8+ T-cell profiles from patients hospitalized with avian H7N9, seasonal IAV, and influenza vaccinees. Patient survival reflects an early, transient prevalence of highly activated CD38+HLA-DR+PD-1+ CD8+ T cells, whereas the prolonged persistence of this set is found in ultimately fatal cases. Single-cell T cell receptor (TCR)-αβ analyses of activated CD38+HLA-DR+CD8+ T cells show similar TCRαβ diversity but differential clonal expansion kinetics in surviving and fatal H7N9 patients. Delayed clonal expansion associated with an early dichotomy at a transcriptome level (as detected by single-cell RNAseq) is found in CD38+HLA-DR+CD8+ T cells from patients who succumbed to the disease, suggesting a divergent differentiation pathway of CD38+HLA-DR+CD8+ T cells from the outset during fatal disease. Our study proposes that effective expansion of cross-reactive influenza-specific TCRαβ clonotypes with appropriate transcriptome signatures is needed for early protection against severe influenza disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.